Плазма для резки металла. Ручная плазменная резка — быстрый способ резки металла без потери качества

Вам понадобилась высококачественная и недорогая плазменная резка в городе Москва, но вы не знаете, к кому обратиться за выполнением этой задачи и сколько стоят подобные услуги? С этим вам готова помочь компания «ТД МЕГАМЕТАЛЛ», которая предлагает вам лучшие возможности для долгосрочного и выгодного сотрудничества. Наши специалисты подготовят для вас индивидуальный проект. Мы гарантируем вам безукоризненное качество и демократичные цены.

Прайс-лист

Сталь г/к, х/к

  • Цены на плазменную резку рассчитываются исходя из времени выполнения заказа
  • Цены, указанные в прайс листах, являются ориентировочными и могут меняться в зависимости от сложности и объема заказа
  • Максимальный размер листа заготовки 6000x1500 мм.
  • Минимальный объем заказа плазменной резки металла 5000 руб
  • Цены на плазменную резку металла указаны с учетом НДС и без стоимости материала.

Значение закладных деталей

Сегодня металлопрокат и обработка закладных деталей обладают колоссальным значением, потому что эти методы напрямую связаны со строительством многоэтажных домов и крупных центров. Практика показывает, что именно металлоконструкции обладают надлежащей прочностью и простотой в сборке, что сделало их оптимальным вариантом в условиях современного рынка.

Учитывая это, можно сделать вывод, что изготовление закладных деталей играет ключевую роль в данном процессе. От качества подобных элементов зависит целостность будущей конструкции, поэтому крайне важно, чтобы производство соединительных компонентов выполнялось с соблюдением всех действующих норм и правил. Огромную роль здесь играет резка металла плазмой, при помощи которой без лишнего труда можно справиться даже со сложными задачами.

Что представляет собой данный процесс?

Новейшая плазменная резка металлов – это специальный, инновационный и высокотехнологичный вид обработки различных сплавов. Для этого используются различные активные газы, которые дают невероятную температуру горения. Уникальный метод подачи гарантирует невероятную интенсивность резки, а также качество среза и потрясающую точность. Стоит отметить, что мощность режущего инструмента настолько высока, что с его помощью можно обрабатывать даже детали толщиной двадцать сантиметров! Подобная струя легко справляется как с чёрными, так и с цветными металлами.

В современном производственном цикле используются установки, работающие под управлением специального программного обеспечения, что позволяет свести к минимуму человеческий фактор. Это приводит не только к оптимальной экономии человеческих ресурсов, но и снижает риск возникновения травматических инцидентов. Специальное ПО помогает вырезать металлические детали точно по заданным параметрам и в необходимом количестве, что делает данную технологию идеальной для современной промышленности.

Подводя небольшой предварительный итог, можно сказать, что новейшая резка металла плазмой является идеальным методом проката и обработки заготовок, что было неоднократно отмечено иностранными и отечественными экспертами. К основным преимуществам данной технологии можно отнести следующее:

Характеристики Традиционные методы Плазменная резка
Безопасность
Низкие затраты
Простота в эксплуатации
Оперативное выполнение
Высокая точность
Отсутствие шлака (стружка, канцерогенные выделения и т.д.)
Минимальная вероятность образования производственного брака
Огромные возможности (изготовление самых необычных форм)
Работа с любыми сплавами
Возможность серийного производства в промышленных масштабах

Как видите, данная технология действительно является передовой, и это напрямую сказывается на том, что услуги плазменной резки пользуются колоссальным спросом среди предпринимателей.

Уникальная специфика металлообработки

Стоит обратить ваше внимание на то, что агрегаты для плазменной резки характерны крупными размерами и большим весом, а также потребляют большое количество электроэнергии. Однако производственная мощность настолько высока, что все затраты на приобретение или аренду подобного оборудования окупаются уже в первый месяц эксплуатации. Если же речь идёт о бытовом применении, то для этих целей подойдут ручные инструменты, с помощью которых плазменная резка металлов не составляет большого труда. Разумеется, что подобные аппараты отличаются меньшей мощностью, но при этом они позволяют справляться с самыми разнообразными задачами:

  • демонтаж массивных металлоконструкций;
  • резка корпусов и остовов для последующей утилизации;
  • перепланировка зданий и т. д.

Заметим, что точность работы при использовании ручных инструментов несколько ниже, чем у аппаратов с центральным процессором, но в качестве ключевого преимущества выступает мобильность агрегата (небольшие габариты обеспечивают простую переноску и транспортировку оборудования). Что касается скорости выполнения работ, то она, разумеется, тоже несколько ниже, чем у промышленных моделей, но при этом подобные приборы также помогают решать даже самые сложные задачи. Именно поэтому сегодня в поисковых системах всё чаще можно встретить такие запросы, как «плазма резка» и так далее.


Описание принципа работы

Вам уже известно, что резка плазмой цена которой приемлема для каждого, является идеальной альтернативой газопламенного метода. Этот результат достигается благодаря плазменно-дуговому способу резки. Иными словами, между обрабатываемой поверхностью и электродом создаётся сверхмощная электрическая дуга. При этом для достижения наилучшего результата (скорость, качество, безопасность) из сопла подаётся газ под высоким давлением.

Это позволяет создать потрясающий эффект: струя зажжённого газа в сочетании с электрической плазмой даёт температуру от 5000 до 30000 градусов по Цельсию! Что же касается скорости движения струи плазмы, то она достигает 1,5 км/с. За счёт подобных характеристик художественная резка плазмой позволяет работать даже с самыми прочными сплавами из всех известных человеку!

На основе данной информации можно сделать вывод, что художественная резка металла плазмой обеспечивает великолепный эффект, и в добавление к этому качество среза при этом остаётся не небывалой высоте. Специалисты утверждают, что данный метод настолько чист и точен, что заготовки и детали, полученные с его помощью, практически не нуждаются в постобработке. Благодаря этому изготовление закладных деталей обладает колоссальной скоростью, что сказывается на увеличении объёмов готовой продукции при сниженных затратах, а это приводит к рентабельности предприятия.

Важно отметить, что, несмотря на гигантскую температуру электрической дуги, сама деталь незначительно нагревается и даже в непосредственной близости от места среза (10 - 20 см) остаётся холодной, за счёт чего достигается автоматизация рабочего процесса (применение конвейерной ленты). Кроме того, эта особенность исключает оплавление заготовки, что особенно важно, если речь идёт о драгоценных металлах и новейших сплавах:

Дополнительные возможности

Как уже было сказано выше, художественная резка плазмой предполагает образование потока плазмы между рабочим элементом и деталью, однако последняя выступает в роли компонента электрической цепи, что допустимо не во всех случаях металлообработки. Специально для этого был разработан новый метод, при помощи которого изготовление пластин стало простой и доступной задачей. В этом случае используется плазмотрон, внутри которого создаётся электрическая дуга, вырывающаяся наружу через специальный отвод, предназначенный для концентрирования энергии в тонкий направленный пучок невероятной силы. Это позволяет добиться следующего:

  • работа с неэлектропроводными материалами;
  • эффективное воздействие высокоскоростной электрической дуги.

Этот метод применяется в ручных инструментах, благодаря чему художественная резка металла плазмой становится универсальным способом обработки. Эксперты утверждают, что данная технология помогает снизить электропотребление и уменьшить габариты оборудования.

Заметьте, что в промышленных образцах используются форсунки – элементы, по которым подаётся газ. Эти компоненты нуждаются в постоянном охлаждении, потому как напрямую взаимодействуют с потоком плазмы. Для этого применяется система водного охлаждения, что снижает риск выхода из строя и продлевает долговечность оборудования. Благодаря этому резка плазмой цена которой не достигает заоблачных высот, является оптимальным выбором для промышленности, и современное изготовление пластин - прямое доказательство этого утверждения.


Выгодное предложение

Вам потребовались услуги плазменной резки, но вы не имеете ни малейшего понятия о том, к кому обратиться за этим? Компания «ТД МЕГАМЕТАЛЛ» готова взять решение этой проблемы на себя! Больше вам не придётся искать в Интернете объявления вроде «плазма резка», потому что мы готовы предложить вам вариант, от которого вы вряд ли сможете отказаться.

Компания «ТД МЕГАМЕТАЛЛ» является ведущим лидером в области металлопроката. В своей работе мы используем самое передовое оборудование, а наш персонал обладает необходимой квалификацией. Это помогает нам гарантировать нашим клиентам высочайшее качество.

Хотелось бы обратить ваше внимание на тот факт, что мы уже несколько лет активно сотрудничаем с лучшими металлургическими комбинатами России и стран ближнего зарубежья. За счёт этого мы получаем заготовки из первых рук, что позволяет снизить конечную стоимость готовой продукции. Огромным значением здесь обладает отлаженная логистическая система, которая позволяет организовывать любые поставки закладных деталей и прочих изделий. Кроме того, компания «ТД МЕГАМЕТАЛЛ» предоставляет вам собственный транспорт для вывоза. Что касается преимуществ, которыми обладает компания «ТД МЕГАМЕТАЛЛ», то здесь необходимо отметить следующее:

  • демократичная стоимость;
  • богатый ассортимент продукции (чёрный/цветной/нержавеющий металлопрокат, проволока, сетка, профнастил);
  • широкий спектр услуг (лазерная/плазменная/ленточно-пильная резка, сверловка, обработка на фрезерных станках, рубка, гибка);
  • оперативная доставка;
  • индивидуальный подход к каждому клиенту;
  • персональные скидки;
  • возможность отсрочки платежа;
  • грамотная помощь ведущих специалистов.

Вместе с нашей компанией плазменная резка в городе Москва станет простой и выполнимой задачей. Если у вас возникли какие-либо вопросы, то вы можете связаться с нашими менеджерами. Дополнительную информацию о деятельности нашей компании вы можете найти на официальном веб-сайте. «ТД МЕГАМЕТАЛЛ» - это ваш надёжный и проверенный партнёр!

Источником электропитания может быть:

  • трансформатор . Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор . Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция плазмотрона состоит из следующих составляющих:

  • охладитель;
  • колпачок.

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

Принцип работы

Принцип действия плазмотрона заключается в следующем. Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Технология плазменной резки металла вкратце может быть описана следующим образом. Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги (между наконечником форсунки и неплавящимся электродом. От искры загорается поток газа, здесь же он ионизируется, превращаясь в управляемую плазму (с крайне высокой, 800 и даже 1500 м/с скоростью выхода).

В выходном отверстии, от сужения, происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20 0000с. Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Плазменно-дуговой способ используется с замыканием обрабатываемой поверхности в проводящий контур. Другой вид резки (плазменной струей) — работает при наличии стороннего (косвенного) образования высокотемпературного компонента в рабочей схеме плазмотрона. Нарезаемый металл не включен в проводящий контур

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток. При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует. Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Подвергаются токопроводящие материалы. При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы. Последняя образуется за счет поступления газа, его нагрева и ионизации. Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование. Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл. Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу. Кроме того, она охлаждает компоненты плазмотрона и поглощает вредные выделения.

Основанная на указанных принципах плазменная резка обеспечивает не только высокопроизводительное производство, но и совершенно пожаробезопасное: применяемые в технологии материалы не огнеопасны.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка:

Принцип работы воздушно-плазменной резки металла

Воздушно-плазменная резка: на чем основан принцип осуществления. Плазма, производящая резку, является разогретым газом с высоким значением электропроводности . Его еще называют ионизованным. Генерируется плазма специальным дуговым элементом. Принято называть этот способ резки плазменным.

Обычная дуга сжимается плазмотроном. Ионизованный газ вдувается в нее, с помощью чего она может генерировать горячий воздух. Она способна производить обработку, при помощи повышенной температуры.Металл разрезается, плавясь при этом.

Осуществление обработки металла происходит благодаря, как плазменной дуге, так и струе. В первом варианте на металлическое изделие оказывается прямое воздействие, во втором — косвенное. Наиболее распространенным и действенным является метод резки с помощью действия напрямую. Для материала, который не обладает электропроводностью (как правило это неметаллические изделия) применяют способ непрямого влияния. При любом из вариантов разрезаемый материал не теряет агрегатного состояния и его конструкция слабо подвергается деформации.

Принцип работы плазменного резака

Плазмотрон – это техническое устройство, которое образует электрический разряд между электродом (катодом) и поверхностью обрабатываемого изделия (анодом), это происходит в потоке газа который образует плазму.

Принцип работы устройства: для охлаждения применяется вода или газ, для получения плазмы используется плазмообразующий газ. Поток входящего в камеру газа подвергается нагреванию до высоких температур после чего ионизируется, тем самым приобретает свойства плазмы. Плазмообразующий газ и охлаждающий подаются в различные каналы плазматрона . При подаче питания между катодом и соплом образуется так называемый вспомогательный разряд, визуально её можно видеть как небольшой факел.

Основная (рабочая дуга) образуется при касании второстепенного разряда обрабатываемой поверхности, которая в данном случае выполняет роль анода (плюс). Стабилизация разряда может осуществляться магнитным полем, водой либо газом, зачастую стабилизирующий газ является и плазмообразующим. После этого можно проводить резку материала, нанесение покрытий, сварку, наплавку или даже добычу полезных ископаемых, путём разрушения горных пород.

Условно конструкцию плазмотрона можно представить как несколько основных элементов:

  1. изолятор;
  2. электрод;
  3. сопло;
  4. механизм для подвода плазмообразующего газа;
  5. дуговая камера.

Конструкция и принцип работы плазмотрона с совмещенным соплом и каналом

Особенностью плазмотрона, использующего воздушно-плазменную резку является совмещение канала и сопла. Воздух проходит через канал сопла наружу. Принцип работы схож, при подаче электропитания промеж катодом и соплом образуется вспомогательный разряд. Воздух закрученный по спирали, стабилизирует и сжимает столб рабочего разряда. Он же предотвращает соприкосновение электрической дуги стенок соплового канала.

Типы плазмотронов

Плазмотроны можно условно разделить на три глобальных типа

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Устройства работающие на основе электрической дуги оснащены одним катодом, который подключен к источнику питания постоянного тока. Для охлаждения применяют воду, которая находится в охладительных каналах.

Можно выделить следующие виды электродуговых аппаратов

  • с прямой дугой;
  • косвенной дугой (плазмотроны косвенного действия);
  • с использованием электролитического электрода;
  • вращающимися электродами;
  • вращающейся дугой.

Автомат: принцип работы

Станок плазменной автоматической резки имеет:

  1. пульт управления,
  2. плазмотрон
  3. рабочий стол для заготовок.

Автомат для резки (Китай)
Источник фото: ru.made-in-china.com

На пульте управления происходит корректировка предварительно установленных программ, если резка отклоняется от установленных параметров. Для оперативного исправления в процессе работы и выбора оптимальных режимов резания.

Через установленный на рабочем столе лист, пропускается электрический ток. Между поверхностью листа и плазмотроном пробегает первичная электродуга. В которой сжатый воздух, разогревается до состояния плазмы. Первичная дуга скрывается в раскаленной ионизированной струе, которая и режет металла.

Резка начинается с середины или с края. Чем чаще происходит прерывание дуги и зажигание новой искры, тем меньше становится ресурс сопла и катода. Грамотный оператор автоматической резки выбирает режимы резания по таблице и отталкиваясь от конкретных условий (толщина металла, диаметр сопла). Благодаря чему можно добиться значительного сокращения расходов. По окончанию операции, автомат самостоятельно оповестит оператора, выключит и отведет плазмотрон от материала.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

ВАЖНО ! Для некоторых марок металла недопустимо применение определенных плазмообразующих смесей (к примеру, для резки титана нельзя использовать смеси, содержащие в составе азот или водород).

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие .

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ .

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью , и соответственно, производительностью , и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

Оставить свой отзыв

) струи плазмы называется плазменной резкой. Поток плазмы образуется в результате обдува газом сжатой электрической дуги. Газ при том нагревается и ионизируется (распадается на отрицательно и положительно заряженные частицы). Температура плазменного потока составляет около 15 тысяч градусов по Цельсию.

Виды и способы резки при помощи плазмы

Резка плазмой бывает:

  • поверхностная;
  • разделительная.

На практике широкое применение нашла разделительная плазменная резка. Поверхностная резка используется крайне редко.

Само резание осуществляется двумя способами:

  • плазменной дугой. При резании стали этим способом разрезаемый металл включается в электрическую цепь. Дуга образуется между вольфрамовым электродом резака и изделием.
  • плазменной струей. Дуга возникает в резаке между двумя электродами. Разрезаемое изделие в электрическую цепь не включается.

Плазменная резка превосходит по производительности кислородную. Но если режется материал большой толщины или титан, то предпочтение надо отдавать кислородной резке. Плазменная резка незаменима при резании (особенно ).

Виды газов, применяемых для плазменного резания.

Для образования плазмы используются газы:

  • активные – кислород, воздух. Применяются при резке черных металлов
  • неактивные – азот, аргон, . Применяются при резке цветных металлов и сплавов.
  1. Сжатый воздух. Используется для резки:
  • меди и ее сплавов – при толщине до 60 mm;
  • алюминия и его сплавов – при толщине до 70 mm;
  • стали – при толщине до 60 mm.
  1. Азот с аргоном. Применяется для резки:
  • высоколегированной стали толщиной до 50 mm.

Применять эту газовую смесь для резания меди, алюминия, и черной стали не рекомендуется;

  1. Чистый азот. Используется для резания (h=толщина материала):
  • меди h равной до 20 mm;
  • латуни h равной до 90 mm;
  • алюминия и его сплавов h равной до 20 mm;
  • высоколегированных сталей h равной до 75 mm, низколегированных и низкоуглеродистых – h равной до 30 mm;
  • титана – любой толщины.
  1. Азот с водородом. Применяется для резки:
  • меди и ее сплавов средних толщин (до 100 mm);
  • алюминия и сплавов средних толщин – до 100 mm.

Азотоводородная смесь непригодна для резки любых сталей и титана.

  1. Аргон с водородом. Применяется при резке:
  • Меди, алюминия и сплавов на их основе толщиной от 100 мм и выше;
  • Высоколегированной стали толщиной до 100 мм.

Для резки углеродистых, низкоуглеродистых и низколегированных сталей, а также для титана аргон с водородом применять не рекомендуется.

Оборудование для плазменной резки: виды и краткая характеристика.

Для механизации плазменной резки созданы полуавтоматы и машины переносные различных модификаций.

1. могут работать как с активными, так и с неактивными газами. Толщина разрезаемого материала колеблется от 60 до 120 мм.

  • Расход газа:
  1. воздух – от 2 до 5 м куб/час;
  2. аргон – 3 м куб/час;
  3. водород – 1 м куб/час;
  4. азот – 6 м куб/час.
  • Скорость перемещения – от 0,04 до 4 м/мин.
  • Рабочее давление газа – до 0,03 МПа.
  • Вес полуавтоматов составляет 1,785 – 0,9 кг в зависимости от модификации.

2. Переносные машины используют сжатый воздух.

  • Толщина разрезаемого материала – не более 40 мм.
  • Расход сжатого воздуха – от 6 до 50 м куб/час;
  • Охлаждение плазмотронов – водой или воздухом.
  • Скорость перемещения – от 0,05 до 4 м/мин.
  • Рабочее давление газа – до 0,4 – 0,6 МПа.
  • Вес переносных машин – до 1,8 кг в зависимости от модификации.
  • Плазмотроны, охлаждаемые водой, могут эксплуатироваться только при плюсовых температурах окружающей среды.
  • Полуавтоматы и переносные машины пригодны для промышленного использования.

Для ручной резки выпускаются два комплекта:

  • КДП-1 с плазмотроном РДП-1;
  • КДП-2 с плазмотроном РДП-2.

Резание плазмой

Аппарат КДП-1 используется для резки алюминия (до 80 мм), нержавеющих и высоколегированных сталей (до 60 мм) и меди (до 30 мм).

Максимальный рабочий ток – 400 А.

Максимальное напряжение холостого хода источника питания – 180 В.

Плазмотрон РДП-1 работает с азотом, аргоном или смеси этих газов с водородом.

Охлаждается плазмотрон РДП-1 водой, потому его можно использовать при температуре выше 0 градусов Цельсия.

Аппарат КДП-2 уступает первому по мощности дуги (всего 30 кВт). Преимущество этой модели в том, что охлаждение плазмотрона РДП-2 осуществляется воздухом. В результате комплект может быть использован на открытом воздухе при любой температуре окружающего воздуха.

Комплектность аппаратов ручной резки:

  • режущий плазмотрон;
  • кабель-шланговый пакет;
  • коллектор;
  • зажигалка для возбуждения режущей дуги.

Комплекты для ручной плазменной резки выпускаются беспультовыми. Такое конструктивное решение рационально для выполнения ограниченного объема работ с загрузкой оборудования не более чем на 40 – 50%. Но на время работы их приходится доукомплектовывать сварочными выпрямителями и преобразователями.

При том не следует забывать, что с точки зрения техники безопасности для ручной резки допускается величина напряжения холостого хода источника питания не более 180 В.

Плазменная резка металлов выполненная своими руками: некоторые тонкости процесса.

  • Началом процесса резания металлов считается момент возбуждения плазменной дуги. Начав резку, необходимо поддерживать постоянное расстояние между соплом плазмотрона и поверхностью материала. Оно должно быть от 3 до 15 мм.
  • Необходимо стремиться к тому, чтобы в процессе работы ток был минимальным, потому что при увеличении силы тока и расхода воздуха снижается ресурс работы сопла плазмотрона и электрода. Но при этом уровень тока должен обеспечивать оптимальную производительность резки.
  • Наиболее сложной операцией является пробивка отверстий. Сложность заключается в возможном образовании двойной дуги и выходе из строя плазмотрона. Потому при пробивке плазмотрон должен быть поднят над поверхностью металла на 20 – 25 мм. Опускается плазмотрон в рабочее положение только после того, как металл будет пробит насквозь. При пробивке отверстий в листах большой толщины специалисты рекомендуют использовать защитные экраны с отверстиями диаметром 10-20 мм. Экраны помещаются между изделием и плазмотроном.
  • Для ручной резки высоколегированных сталей в качестве плазмосодержащего газа применяется азот.
  • При ручной резке алюминия с применением аргоноводородной смеси содержание водорода не должно превышать 20% для повышения стабильности горения дуги.
  • Резку меди выполняют с использованием водородосодержащих смесей. А вот латунь требует азота или азотоводородной смеси. При этом резка латуни происходит на 20% быстрее, чем меди.
  • После резки медь обязательно зачищают на глубину 1-1,5 мм. Для латуни это требование не является обязательным.
Плазменная резка — вид плазменной обработки материалов, при котором в качестве режущего инструмента вместо резца используется струя плазмы.

(Википедия)

Плазменная резка на сегодняшний день считается одним из наиболее эффективных способов прямолинейного и фигурного раскроя металла. Позволяет выполнять резание всех видов сталей, алюминия, меди, чугуна, титана, листового и профильного проката, осуществлять скос кромок под определенным углом.

Характерные преимущества процесса

Плазменная резка металла характеризуется такими особенностями:

  1. Высокая производительность. В 5-10 раз выше скорость раскроя сравнительно с газокислородным способом. Уступает по данному параметру лишь лазерному резанию.
  2. Универсальность. Возможен раскрой практически любого материала, достаточно установить оптимальные параметры процесса - мощность и давление газа.
  3. Качество подготовки не имеет особого значения - лакокрасочное покрытие, грязь или ржавчина на металле для плазменной резки не страшны.
  4. Повышенное качество и точность. Современные агрегаты обеспечивают минимальную ширину реза, относительно чистые без чрезмерного количества окалины на кромках - в большинстве случаев не нуждаются в дополнительной механической обработке и даже зачистке.
  5. Небольшая зона термического влияния способствует минимизации деформации вырезаемых заготовок в результате воздействия повышенной температуры.
  6. Возможность фигурной вырезки сложных геометрических форм.
  7. Безопасность процесса в отличие от газо-кислородной резки, где присутствуют баллоны со сжатым кислородом и горючим газом.
  8. Агрегаты для плазменной резки металла просты в обслуживании и эксплуатации.


Что представляет собой процесс плазменной резки металла?

Плазма - токопроводящий ионизированный газ высокой температуры. Образуется струя в специальном устройстве - плазмотроне . Он состоит из таких основных элементов:

  1. Электрод (катод) - оснащен вставкой из материала с высокой термоэлектронной эмиссией (гафний, цирконий), которая выгорает в процессе эксплуатации и при выработке более 2 мм требует замены.
  2. Механизм закрутки газового потока.
  3. Сопло - как правило, изолированное от катода специальной втулкой.
  4. Кожух - защищает внутренние компоненты от брызг расплавленного металла и металлической пыли.

Имеет 2 провода - анод (с положительным зарядом) и катод (с отрицательным зарядом). «Плюсовой» провод подсоединяется к разрезаемому металлопрокату, «минусовой» - к электроду.

В начале процесса плазменной резки металла поджигается дежурная дуга между катодом и наконечником, которая выдувается из сопла, а при касании к обрабатываемому изделию образует уже режущую дугу.

При заполнении формирующего канала в плазмотроне столбом дуги в дуговую камеру под давлением в несколько атмосфер начинает подаваться плазмообразующий газ, который подвергается нагреву и ионизации, что способствует его увеличению в объеме. Это ведет к его истеканию из сопла с большой скоростью (до 3 км/сек.), а температура дуги в этот момент может достигать от 5000 до 30000 °C.

Небольшое отверстие в сопле сужает дугу, что способствует ее направленному воздействию в определенную точку на металле, который практически мгновенно нагревается до температуры плавления и выдувается из зоны реза.

После прохождения плазмотроном по заданному контуру получается заготовка необходимых размеров и формы с ровными кромками и минимальным количеством окалины на них.


Плазмообразующие газы для раскроя различных металлов

Для плазменной резки металлов могут использоваться как активные, так и неактивные газы. Их выбор осуществляется в зависимости от разновидности металла и его толщины:

  • Азотоводородная смесь предназначена для меди, алюминия и сплавов на их основе. Максимально возможная толщина - 100 мм. Неприменима для титана и всех марок сталей.
  • Азот с аргоном используется в основном для плазменной резки высоколегированных марок сталей, толщина которых не превышает 50 мм, но не рекомендована смесь для черных металлов, титана, меди и алюминия.
  • Азот. С его помощью выполняется раскрой сталей с низким содержанием углерода и легирующих элементов толщиной до 30 мм, высоколегированных - до 75 мм, меди и алюминия - до 20 мм, латуни - до 90 мм, титана неограниченной толщины.
  • Сжатый воздух. Оптимально подходит для воздушно-плазменной резки черных металлов и меди толщиной до 60 мм, а также алюминия - до 70 мм. Не предназначен для титана.
  • Смесь аргона с водородом - раскрой сплавов на основе алюминия и меди, сталей с большим содержанием легирующих элементов толщиной свыше 100 мм. Не рекомендуется использовать для низкоуглеродистых, углеродистых, низколегированных марок сталей и титана.

Но недостаточно просто подключить баллон с необходимым плазмообразующим газом, так как от его состава зависят многие технические характеристики оборудования:

  • мощность и внешние (статистические и динамические) характеристики источника питания;
  • циклограмма аппарата;
  • способ крепления катода в плазмотроне, а также материал, из которого он изготовлен;
  • тип конструкции механизма охлаждения для сопла плазмотрона.

Советы по плазменной резке цветных и легированных металлов:

  • При ручном раскрое высоколегированных марок сталей в качестве плазмообразующего газа рекомендуется использовать азот.
  • Для обеспечения стабильного горения дуги при ручном резании алюминия аргоноводородной смесью в ней должно содержаться не более 20 % водорода.
  • Латунь лучше всего режется азотом и азотоводородной смесью, а также характеризуется более высокой скоростью раскроя.
  • Медь после разделительного резания в обязательном порядке подвергается зачистке по плоскости реза на глубину 1-1,5 мм. К латуни данное требование не относится.

Области применения плазменной резки

Благодаря высокой производительности, универсальности и доступной стоимости плазменная резка металлов пользуется огромным спросом во многих отраслях промышленности:

  • металлообрабатывающие предприятия и компании;
  • авиа-, судо- и автомобилестроение;
  • строительная промышленность;
  • предприятия тяжелого машиностроения;
  • металлургические заводы;
  • изготовление металлоконструкций.

Все сферы использования перечислить просто невозможно - ручные аппараты и автоматические машины для плазменной резки металлов можно встретить практически повсеместно. Их применяют как крупные заводы по изготовлению металлоконструкций, так и небольшие фирмы, специализирующиеся на художественной ковке и обработке деталей.

Особое место среди данного оборудования занимают машины для плазменной резки металлов с ЧПУ - они сводят к минимуму человеческий фактор, значительно повышают производительность. Но основным их преимуществом является сокращение расхода металлопроката благодаря возможности создания специальных программ. Высококвалифицированные технологи разрабатывают карты раскроя, представляющие собой виртуальный лист металла определенных размеров, на котором они максимально плотно укладывают заготовки с учетом ширины реза и многих других параметров процесса с целью более рационального использования металлопроката.

Тонкости процесса раскроя металла

Для получения качественной заготовки в процессе плазменной резки требуется поддержание постоянного расстояния между соплом и разрезаемым металлом - как правило, в пределах 3-15 мм. В противном случае возможно увеличение ширины реза, зоны термического влияния, несоответствие заготовки заданным размерам.

Ток в процессе работы должен быть минимальным для определенного материала и толщины. Завышенные его значения и, соответственно, повышенный расход плазмообразующего газа являются причиной ускоренного износа катода и сопла плазмотрона.

Самая сложная операция в процессе плазменной резки металла - пробивка отверстий. Это вызвано большой вероятностью образования двойной дуги и поломкой плазмотрона. Пробивка производится на увеличенном расстоянии между катодом и анодом - между соплом и поверхностью материала должно быть 20-25 мм. После сквозной пробивки плазмотрон опускается в рабочее положение.

Плазменная резка позволяет разрезать металл, но не резцом — этот агрегат имеет струю плазмы.

Суть работы плазморезки такова: между соплом, электродом или разрезаемым материалом образовывается электрическая дуга.

Из сопла выходит газ, он преобразовывается в плазму после воздействия электричеством.

Металл разрезается плазмой, температура которой может достигать 30 тыс. градусов.

В статье подробно рассмотрена технология плазменной резки металла, принцип ее работы и некоторые нюансы.

Резка металла с помощью плазмы бывает нескольких видов.

Это зависит от того, в какой среде происходит процесс:

  • Простой - при разрезании используется электрический ток, воздух, иногда вместо воздуха применяют азот. При таком способе длина электрической дуги ограничивается. Если толщина листа несколько миллиметров, то параллельность поверхностей можно сравнить с лазерной резкой. Данный параметр можно соблюсти, разрезая металл, толщина которого 10 мм. Такой способ применяется при разрезании низколегированной или мягкой стали. Кислород применяют в качестве режущего элемента. Кромка после разреза остается ровной, заусенцы не образовываются. Кроме этого, в обработанной кромке металла содержится пониженное содержание азота;
  • С применением защитного газа - в качестве такого газа используются защитный, плазмообразующий. С применением такой резки качество разрезания металла увеличивается, так как срез защищен от воздействия окружающей среды;
  • С водой - вода во время разрезания металла защищает срез от влияния окружающей среды, охлаждает плазмотрон, все вредные испарения поглощаются водой.

Плазменная резка может быть разделительной, поверхностной. Чаще всего применяют разделительную резку.

Также разделяют резку по способам: дугой - при разрезании металла материал является частью электроцепи и струей - при разрезании металл не является частью электроцепи, дуга образовывается между электродами.

Преимущества резки плазмой

Плазменная резка имеет свои плюсы перед лазерной резкой:

  • плазморезкой можно обработать любой металл: цветной, черный, тугоплавкий;
  • скорость разрезания проходит быстрее, чем работа газовой резкой;
  • плазморезкой доступна художественная работа - заготовки можно делать любой геометрической формы, доступна фигурная резка повышенной сложности, художественная резка металла плазмой и деталей;
  • независимо от того, какова толщина разрезаемого металла, можно разрезать заготовку быстро, точно;
  • плазморезкой можно разрезать не только металл, но и материалы, не содержащие в своем составе железа;
  • разрезание материалов с помощью плазмы проходит гораздо эффективнее, быстрее, чем обычная резка механическим способом;
  • в сравнении с лазерной резкой, плазморезка способна обрабатывать листы материала большой ширины, под углом. Изделия получаются с наименьшим количеством дефектов, загрязнений;
  • при работе в воздух выбрасывается минимальное количество загрязняющих веществ;
  • перед тем, как разрезать металл, его не нужно прогревать, таким образом сокращается время прожига;
  • безопасность во время плазменной резки на высоком уровне, так как нет необходимости использовать газовые баллоны, которые очень взрывоопасны.

Наряду с преимуществами плазморезка имеет некоторые недостатки:

  • высокая стоимость плазмотрона;
  • толщина металла, который можно разрезать плазмотроном, не должна быть более 10 см;
  • во время работы агрегат издает большой шум, так как газ подается на высокой скорости, близкой к скорости звука;
  • плазмотрон необходимо правильно обслуживать;
  • к плазмотрону нельзя прикрепить резаки, чтобы металл обрабатывать вручную.

Принцип действия плазмотрона

Плазменная резка металла проводится своими руками, которые не имеют в этом деле большого опыта. В данном разделе рассмотрен принцип действия прибора для плазменной резки.

Если в наличии есть специальный аппарат, то с легкостью можно разрезать металл, плитку из керамики, дерево или пластик своими руками, доступна также фигурная резка.

Кроме этого, аппаратом можно производить сварку цветных, черных металлов, закаливать элементы, выполнять огневую зачистку или отжиг поверхностей, производить художественную резку.

Пример действия плазморезки можно посмотреть на видео.

В отличие от лазерной, принцип резки плазмой заключается в нагревании до высокой температуры места нагрева именно плазмой. Она образуется в сопле из пара. Сопло имеет узкий канал.

В нем образовывается электродуга. Пар проходит через канал под давлением, вместе с этим дуга охлаждается.

Пар при выходе ионизируется, затем возникает струя плазмы, имеющая высокую температуру - до 6 тысяч градусов.

Схемы и чертежи помогут разобраться в конструкции плазморезки и в принципах образования режущей струи.

При проведении работ плазма не нагревает большой участок материала. Место, где разрез делала плазморезка, остывает гораздо быстрее, чем резка лазерной, механической техникой.

Рабочая жидкость в плазморезке призвана охлаждать сопло и катод, так как это самые нагруженные части аппарата.

Дуга стабилизируется в результате определенного отношения катода, сопла с паром. Резервуар плазмотрона содержит специальный материал, который впитывает влагу.

Он помогает рабочей жидкости переноситься к нагревателю. На катоде образовывается отрицательный заряд, на сопле - противоположный, в результате возникает дуга.

При воздействии плазморезкой своими руками, как и при лазерной, механической резке, следует быть осторожным и соблюдать правила безопасности.

Аппарат крайне травматичен для человека — высокое напряжение, нагрев, расплавленный материал.

Перед тем как приступать к работе, важно внимательно изучить схемы аппарата, осмотреть сопло, электрод, щиток на предмет закрепления.

Если они закреплены не надежно, работать плазморезкой нельзя. Также нельзя ударять аппаратом о металл с целью удаления брызг - так аппарат может повредиться.

Резка с помощью плазмы своими руками будет выполнена качественно, на срезе не будет окалины, заусенец, материал не деформируется, если при работе правильно рассчитать ток.

Чтобы это сделать, нужно применить действия, согласно схеме: подать высокий ток, произвести пару разрезов. По материалу будет видно, нужно снизить ток или оставить высоким.

Если для материала ток большой, то на нем будет образовываться окалина в результате его перегрева.

Технология работы плазморезкой

Перед тем как начать разрезание плазмой, стоит знать, как проходит весь процесс. В отличие от лазерной резки, горелку плазмы стоит разместить близко к краю материала.

После включения кнопки «пуск» будет зажжена сначала дежурная дуга, потом режущая. Горелку с режущей дугой необходимо медленно вести по материалу.

Причин можно отметить несколько: высокая скорость прохождения аппарата, низкий ток, горелка не находилась под углом в 90 гр. к разрезаемому металлу. Как правильно установить угол резки, показано на видео.

После завершения процесса, горелку нужно наклонить, как показывают схемы. Стоит помнить, что после выключения пуска, воздух будет идти еще какое-то время.

Проплавить полностью металл плазморезка сможет в тот момент, когда наклон составит 90 градусов и выше.

После включения аппарата — дождаться появления режущей дуги, создать между горелкой и материалом прямой угол. Так любая фигурная конструкция может получить отверстие.

При работе с плазморезкой стоит изучить схемы аппарата - в них указана наибольшая толщина металла, в котором можно сделать отверстие. Технология плазменной резки подробно показана на видео.

Как выбрать плазмотрон?

Чтобы производить резку металла плазморезкой своими руками, важно купить оборудование.

Резка с помощью плазмы может производиться двумя видами плазморезки:

  1. Инвенторная - имеет компактные размеры, для ее работы необходимо малое количество энергии, аппарат легкий с привлекательным дизайном. В то же время у него непродолжительное включение, перепады напряжения негативно скажутся на аппарате;
  2. Трансформаторная - высокая длительность включения, если напряжение будет скакать, плазморезка не выходит из строя. Размер, вес агрегата достаточно большие, энергии такая плазморезка также потребляет много.

При выборе плазмотрона для резки своими руками, рекомендуется обратить внимание на параметры.

Такая плазморезка сможет максимально удовлетворить потребности мастера и выполнить работу.

Мощность

В зависимости от того, каковы характеристики изделия, которое необходимо разрезать, выбирается мощность. Будет отличаться и размер сопла, тип газа.

Так, при мощности 60-90А плазморезка сможет справиться с металлом толщиной 30 мм.

Если необходимо разрезать большую толщину, то рекомендуется купить плазморезку с мощностью 90-170А.

Выбирая агрегат, учтите силу тока, напряжение, которое он сможет выдержать.

Время, скорость разрезания материала

Этот показатель меряют в см, которые аппарат сможет разрезать за 1 минуту. Одни плазморезки смогут разрезать металл за 1 минуту, а другие за 5.

При этом толщина материала будет одинаковая.

Если важно сократить время на резку, то стоит учесть скорость разрезания.
Аппараты отличаются временем работы - длительность разрезания металла, не перегреваясь.

Если указано, что длительность работы составляет 70 процентов, то это значит, что плазморезка будет работать 7 минут, после чего 3 минуты она должна остывать.

Если необходимо сделать длинные разрезы, то рекомендуется выбирать агрегаты с высокой продолжительностью работы.

Горелка плазморезки

Стоит оценить материал, который придется разрезать. Горелка плазморезки должна обладать мощностью, чтобы качественно его разрезать.

При этом стоит учесть, что условия работы могут быть сложными, резка - интенсивной.

Считается, что агрегаты с медным соплом очень прочные, почти не бьются, охлаждаются воздухом очень быстро.

На рукоятки таких плазморезок можно закрепить дополнительные элементы, поддерживающие наконечник сопла на определенном расстоянии. Это во много раз облегчает работу.

Если плазморезкой будет проводиться разрезание тонкого металла, то можно выбрать агрегат, в горелку которого поступает воздух.

Если планируется плазменная резка толстого металла, нужно предпочесть плазмотрон, в горелку которого будет подаваться азот.

Внешние характеристики

При плазморезке своими руками чаще всего выбирают переносные плазморезки, которые отличаются компактными размерами.

Ими не сложно управлять, не имея достаточного опыта, доступна фигурная резка.

Стационарные агрегаты имеют большой вес, предназначены для разрезания более толстых материалов, их цена соответственно будет больше.