Как самолеты влияют на окружающую среду. Специфика воздействия авиационного транспорта на окружающую среду и возможные последствия этого воздействия

Самолеты выбрасывают в атмосферу огромное количество углекислого газа и водяного пара, оксиды азота и сажу. Воздействие этих компонентов на окружающую среду зависит от высоты полета.

То, что самолеты своими выхлопными газами загрязняют окружающую среду, совершенно очевидно и не вызывает никаких сомнений. Да, собственно, любая хозяйственная деятельность человека наносит ущерб природе и способствует изменению климата. Вопрос лишь в том, сколь велик вклад того или иного ее вида в этот общий процесс.

Так вот, по мнению профессора Ульриха Шумана (Ulrich Schumann), директора Института физики атмосферы Немецкого аэрокосмического центра, на долю авиации приходится примерно 3 процента всего антропогенного парникового эффекта. Надо сказать, что далеко не все эксперты согласны с такой оценкой. Что вполне естественно, потому что эта цифра носит очень приблизительный, отчасти даже умозрительный характер. Ведь выхлопные газы самолетов содержат и двуокись углерода, и водяной пар, и оксиды азота, и мелкодисперсную сажу. Все эти компоненты оказывают на окружающую среду и на климат планеты отнюдь не однозначное, а иногда и разнонаправленное воздействие.

Углекислый газ распределяется равномерно

Дело в том, что авиационное топливо - керосин - представляет собой сложную смесь углеводородов. Углерод составляет в ней 86 процентов, водород - 14 процентов. При горении углерод соединяется с кислородом воздуха, так что сжигание каждого килограмма авиационного керосина пополняет атмосферу 3,15 килограммами углекислого газа. "Поскольку же углекислый газ - вещество весьма стабильное, он равномерно распределяется вокруг всего земного шара", - говорит профессор Шуман.

Кроме того, СО2 легко мигрирует и в вертикальном направлении, поэтому образовался ли он вблизи поверхности Земли или же на высоте 10-11 тысяч метров, где пролегают большинство коридоров гражданской авиации, не играет никакой роли. Поэтому несложно подсчитать, что примерно 2,2 процента всего антропогенного углекислого газа выбрасывают в атмосферу самолеты. На долю автомобильного транспорта приходится около 14 процентов, другие виды транспорта - морской, железнодорожный и прочие - производят в сумме 3,8 процента.

Воздействие конденсационного следа зависит от высоты

Гораздо сложнее оценить роль выбрасываемого авиацией водяного пара. То есть количественная оценка особого труда не составляет: известно, что при сжигании одного килограмма керосина образуется 1,23 килограмма водяного пара. А вот с качественной оценкой дело обстоит сложнее. При попадании горячих и влажных выхлопных газов в холодную окружающую среду пар конденсируется, образуя мельчайшие капельки воды, а на больших высотах, где температура забортного воздуха достигает 30-40-50 градусов ниже нуля, - мельчайшие льдинки. Эти капельки и льдинки порой хорошо видны с земли - в виде так называемого конденсационного следа, тянущегося за самолетом. Какое воздействие этот след оказывает на атмосферу, зависит от высоты полета.

"Тропосфера - это нижний, очень турбулентный слой атмосферы, в котором формируется погода, - поясняет профессор Шуман. - Над ней расположена тропопауза, слой, в котором с ростом высоты температура уже не снижается, а еще выше - стратосфера, для которой характерна высокая стабильность слоев, почти не перемешивающихся между собой".

Водяной пар и нагревает, и охлаждает

В стратосфере с ее крайне низким содержанием влаги - менее 0,01 промилле - льдинки конденсационного следа быстро испаряются. А вот в тропосфере, где воздушные массы могут быть до предела насыщены влагой, поведение конденсационного следа зависит от множества погодных факторов, говорит профессор Шуман: "Если влажность воздуха высока, кристаллики льда вбирают в себя дополнительно воду, растут, и из конденсационных следов могут сформироваться перистые облака. Они способствуют дальнейшей конденсации влаги из воздуха, в результате плотность и водность облаков увеличиваются".

Такое развитие событий наблюдается в 10-20 процентах случаев. "Иными словами, воздушный транспорт реально усиливает облачность на нашей планете", - подчеркивает ученый. Правда, тут уместен вопрос: хорошо это для климата или плохо? С одной стороны, облака отражают часть коротковолнового солнечного излучения обратно в космос. "Упрощенно можно сказать так: конденсационные следы отбрасывают на землю тень, а в тени прохладнее, чем на солнцепеке", - поясняет профессор Шуман. С другой стороны, кристаллики льда в таких облаках поглощают длинноволновое инфракрасное излучение, а затем направляют часть этого тепла на землю. Налицо два разнонаправленных эффекта, и какой из них превалирует, специалисты точно сказать не могут, хотя большинство экспертов склонны полагать, что нагрев все же несколько сильнее охлаждения.

Контекст

Воздействие сажи изучено пока недостаточно

Еще один фактор, влияющий на окружающую среду и климат планеты, - это сажа в форме мелкодисперсной пыли. Диаметр сажевых частиц в выхлопных газах самолетов составляет от 5 до 100 нанометров. Понятно, что эта пыль, едва попав в атмосферу, вносит свой вклад в образование конденсационного следа, поскольку на ней оседает часть водяного пара, выбрасываемого самолетом одновременно с сажей. Да и помимо этого сажевые частицы могут неделями пребывать в воздухе во взвешенном состоянии, способствуя формированию облаков. Однако в этих же процессах участвуют и пылевые частицы иного происхождения, как естественного (вулканическая пыль, пыль пустынь, пыль от эрозии почв), так и антропогенного (эмиссии промышленных предприятий), а кроме того капельки жидкости разной природы.

В такой ситуации оценить влияние сажи вообще, а тем более сажи, выбрасываемой именно самолетами, крайне сложно. По словам профессора Шумана, Немецкий аэрокосмический центр изучает воздействие на окружающую среду, скажем, и сажевых частиц, эмитируемых в атмосферу при крупных лесных пожарах. Однако результаты оказались весьма противоречивыми. Даже на вопрос, способствует ли сажа увеличению или уменьшению облачности, окончательного и однозначного ответа пока нет.

Озон озону рознь

Отдельная тема - влияние выхлопных газов самолетов на концентрацию озона в атмосфере. Как известно, камера сгорания современного авиационного двигателя может раскаляться до 2000 градусов. "При таких температурах азот, находящийся в воздухе в свободном состоянии, связывается с кислородом, образуя оксиды NO и NO2, - поясняет профессор Шуман, - однако эти оксиды оказывают на атмосферный озон разнонаправленное действие: на больших высотах они его разлагают, на малых высотах - образуют".

Разложение озона превалирует на высотах более 16 тысяч метров, однако туда обычные гражданские самолеты не залетают. Их коридоры расположены ниже 12 тысяч метров, а там оксиды азота вызывают активное образование озона. К сожалению, этот так называемый тропосферный озон усиливает парниковый эффект - так же как углекислый газ или водяной пар. К тому же повышенное содержание озона в воздухе негативно отражается на здоровье. И этот озон никак не связан с тем озоновым слоем в стратосфере, который защищает нашу планету от жесткого ультрафиолетового излучения. Иными словами, озоновую дыру над Антарктикой выхлопными газами самолетов не залатаешь.

Научно-техническая революция обеспечила человечество небывалыми благами, среди которых одним из важнейшим стала быстро перемещаться на большие дистанции. Человек покорил небо! Наконец сбылась многовековая вековая мечта человечества. Но один из главных законов экологии утверждает: за все надо платить.

Когда мы слышим слово «авиация», сразу представляем себе превосходную картинку: большой самолет гордо летит в небе, на бешеной скорости преодолевая большие расстояния. Но как ему удается летать, сколько вреда наносит один полет и сама подготовка к нему окружающей среде - все это уходит, к сожалению, на второй план.

Этой статьей я хотел бы сообщить читателям о пагубном влиянии, который вызывает авиация на окружающую среду и, собственно, и на здоровье человека.

Термин «авиация» значит для нас две вещи: самолет и аэропорт. Причем аэропорт для нас местом, откуда, собственно, самолет отправляется в путешествие. Однако мы здесь несколько ошибаемся.

Аэропорт - это многофункциональное транспортное предприятие, которое является наземной частью авиационной транспортной системы, которая обеспечивает взлет и посадку воздушных судов, их наземное обслуживание, прием и отправка пассажиров, багажа, почты и грузов. Аэропорт обеспечивает необходимые условия для функционирования авиакомпаний, государственных органов регулирования авиационной и таможенной деятельности

Есть к объектам аэропорта входят не только самолеты, но средства его обслуживания: спецавтотранспорт, о котором мы поговорим чуть позже.

В результате воздушных перевозок происходит загрязнение почв, водных объектов и атмосферы, а сама специфика влияния воздушного транспорта на окружающую среду обнаружена в значительной шумовой действия и значительных выбросах различных загрязняющих веществ (см. схему).

Негативное воздействие различных авиационных источников шума, в первую очередь, осуществляется на операторов, инженеров и техников производственных подразделений. Так исторически сложилось, что аэропорты расположены вблизи густонаселенных районов города. Поэтому с ростом городов и интенсификацией авиатранспортных процессов возникает серьезная проблема сосуществования города и аэропорта. Население авиамоста и близлежащих поселков испытывают шум от самолетов, пролетающих. В меньшей степени испытывают шум персонал аэропортов, авиапассажиры и посетители.

Кроме шума авиация приводит к электромагнитному загрязнению среды . Его вызывает радиолокационная и радионавигационная техника аэропорта и самолетов. Радиолокационные средства могут создавать электромагнитные поля большой напряженности, которые представляют реальную угрозу для людей.

Действие электромагнитных волн на живые организмы сложная и недостаточно изучена. Взаимодействуя с организмами, электромагнитные волны частично отражаются, а частично поглощаются и распространяются в них. Степень воздействия зависит от величины поглощения энергии тканями организма, частоты волн и размеров биообъекта.

Влияние воздушного транспорта на экосистемы (схема) При постоянном воздействии электромагнитных волн малой интенсивности возникают расстройства нервной и сердечно-сосудистой системы, эндокринных органов и прочее. Человек чувствует раздражение, головные боли, ослабление памяти и др.. Адаптации к электромагнитному воздействию не возникает.

Выбросы из авиадвигателей и стационарных источников представляют собой еще один аспект влияния воздушного транспорта на экологическую ситуацию, но авиация имеет ряд отличий по сравнению с другими видами транспорта:

Использование в основном газотурбинных двигателей приводит иной характер протекания процессов и структуру выбросов отработанных газов;

Использование в качестве топлива керосина приводит к изменению компонентов загрязняющих веществ;

Полеты самолетов на большой высоте и с большой скоростью вызывают рассеяние продуктов сгорания в верхних слоях атмосферы и на больших территориях, снижает степень их воздействия на живые организмы.

Воздушные корабли загрязняют приземные слои атмосферы отработанными газами авиадвигателей вблизи аэропортов и верхние слои атмосферы на высотах крейсерского полета. Отработанные газы авиационных двигателей составляют 87% всех выбросов гражданской авиации, которые включают также атмосферные выбросы спецавтотранспорта и стационарных источников.

Химический состав выбросов зависит от вида и качества топлива, технологии производства, способа сжигания в двигателе и его техническом состоянии. Наиболее неблагоприятными режимами работы являются малые скорости и «холостой ход» двигателя, когда в атмосферу выбрасываются загрязняющие вещества в количествах, значительно превышающих выброс на нагрузочных режимах. Техническое состояние двигателя непосредственно влияет на экологические показатели выбросов.

Относительно наиболее распространенного в современной гражданской авиации типа авиационного двигателя - турбореактивного двухконтурного (ТРДД) можно выделить пять основных режимов (табл. 1), продолжительность которых соответствует максимальной продолжительности режимов, составляющих среднее время этих режимов для крупных и самых загруженных аэропортов мира.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Влияние транспорта на окружающую среду – одна из самых актуальных проблем современности. И чтобы её решить, нужно вникнуть в суть воздействия и разработать меры, направленные на устранение негативных последствий.

Актуальность проблемы

Существует несколько видов транспорта, но наиболее опасным с точки зрения негативного воздействия на окружающую среду считается автомобильный. И если несколько десятков лет назад личную машину мог позволить себе далеко не каждый, то сегодня она стала необходимым и вполне доступным средством передвижения для многих людей.

В связи с этим доля загрязняющих веществ, выбрасываемых в атмосферу автомобилями, достигла 50%, в то время как в 70-е годы прошлого века она составляла всего 10-15%. А в крупных городах и современных мегаполисах данный показатель может достигать 65-70%. Кроме того, ежегодно количество выбросов возрастает примерно на 3%, и это вызывает серьезные опасения.

Интересный факт: автомобильный транспорт занимает лидирующие позиции с точки зрения ущерба, наносимого окружающей среде, это основной источник загрязнения атмосферы. На его долю приходится более 90% загрязнения воздуха, чуть меньше 50% шумового воздействия, а также около 65-68% влияния на климат.

Вредные вещества, образующиеся в процессе эксплуатации транспорта

Экологические проблемы автомобильного транспорта очень актуальны и связаны с особенностями работы современных моделей. Если брать усреднённые показатели, то одна машина в течение года поглощает около четырёх тонн кислорода, необходимого для запуска процессов сгорания топлива. В результате работы двигателя автомобиля образуются отработанные газы, состоящие из множества вредных компонентов.

Так, в год выбрасывается порядка 800 кг угарного газа, 180-200 килограммов углеродов и примерно 35-40 кг оксидов азота. Также в атмосферу выделяются и канцерогенные соединения: порядка пяти тысяч тонн свинца, около полутора тонн бензапилена, свыше 27 тонн бензола и более 17 тысяч тонн формальдегида. А общее количество всех вредных и опасных веществ, выделяемых в процессе эксплуатации автомобильного транспорта, составляет около 20 миллионов тонн. И такие цифры огромные и пугающие.

Всего в состав отработанных газов, выделяемых автомобильным транспортом, входит свыше 200 различных компонентов и соединений, и подавляющее их большинство обладает токсичными свойствами. А некоторые вещества образуются в результате эксплуатации машин и их взаимодействия с окружающими поверхностями, например, из-за трения резины об асфальт.

Нельзя недооценивать и вред различных автомобильных деталей, утилизации которых не уделяется должного внимания. В итоге образуются стихийные свалки с миллионами запчастей транспорта, изготовленных из резины и металлов, которые также выделяют опасные пары в атмосферу.

Процесс работы двигателя автомобильного транспорта очень сложен и включает массу различных реакций. В ходе последних образуются многочисленные вещества, основными среди которых являются:

  • Углеводороды являются соединениями, состоящими из изначальных или подвергшихся распаду элементов топлива.
  • Сажа представляет собой образующийся в результате пиролиза твёрдый углерод и основную составляющую нерастворимых частиц, выделяемых двигателем автотранспорта.
  • Оксиды серы образуются в процессе входящей в состав автомобильного топлива серы.
  • Оксид углерода – это не имеющий запаха и цвета газ, имеющий невысокую плотность и быстро распространяющийся по атмосфере.
  • Углеводородные соединения. Они изучены довольно плохо, но учёным уже удалось выяснить, что эти компоненты выхлопных газов могут служить исходными продуктами для формирования так называемых фотооксидантов.
  • Оксид азота является бесцветным газом, а диоксид приобретает насыщенный бурый оттенок и характерный неприятный запах.
  • Сернистый ангидрид представляет собой газ без цвета, но с очень едким запахом.

Интересный факт: состав выхлопных отработанных газов, выделяемых в атмосферу в ходе эксплуатации автомобильного транспорта, зависит от особенностей работы машины, её состояния, используемого топлива, а также опыта водителя.

Негативные последствия

Воздействие автомобильного транспорта на окружающую среду крайне негативно. И стоит рассмотреть несколько основных угроз.

Парниковый эффект

О нём говорят все экологи, и последствия такого глобального явления уже начинают проявляться. Возникающие в процессе эксплуатации автомобилей компоненты отработанных выхлопных газов проникают в атмосферу, повышают плотность её нижних слоёв и создают эффект парника. В итоге солнечные лучи попадают на поверхность Земли и нагревают её, но тепло не может уходить обратно в космос (примерно такие процессы наблюдаются в теплицах).

Парниковый эффект – это реальная угроза. К его возможным последствиям относятся повышение уровня мирового океана, глобальное потепление, таяние ледников, природные катаклизмы, хозяйственный кризис, губительное влияние на фауну и флору.

Изменение экосистемы

Из-за загрязнения окружающей среды транспортом страдает практически всё живое на земле. Выхлопные газы вдыхают животные, из-за чего ухудшается функционирование их дыхательной системы. В результате нарушения дыхания и нехватки кислорода страдают другие органы.

Животные испытывают стресс, из-за которого могут вести себя неестественно. Также заметно снижаются темпы размножения, в результате чего одни виды становятся малочисленными, а другие начинают относиться к редким и вымирающим. Сильно страдает и флора, ведь отработанные газы автомобильного транспорта практически сразу попадают на растения, образуя на них плотный налёт и нарушая процессы естественного дыхания.

Кроме того, вредные соединения проникают в почву и из неё всасываются корнями, что также негативно сказывается на состоянии и росте представителей флоры. Связанные с негативным влиянием автотранспорта перемены с каждым годом становятся всё более масштабными и глобальными, а со временем они могут привести к краху существующей на планете Земля экосистемы, что повлияет на жизнь человечества, воздух, атмосферу.

Экологические проблемы из-за автотранспорта

Экологические проблемы автотранспорта — актуальные вопросы. Активная и повсеместная эксплуатация автомобилей сильно ухудшает экологию, загрязняет воздух, водоёмы, осадки, атмосферу. И такая ситуация может привести к многочисленным проблемам со здоровьем.

Так, сильно страдает дыхательная система, ведь вредные вещества выхлопных газов практически сразу попадают в неё, раздражают слизистые оболочки, засоряют лёгкие и бронхи. Из-за нарушения дыхания возникает дефицит кислорода во всех тканях человеческого организма. Кроме того, опасные выбрасываемые автомобильным транспортом соединения разносятся с кровью и оседают в различных органах, и последствия такого загрязнения могут проявляться спустя годы в виде хронических или даже онкологических заболеваний.

Кислотные дожди

Ещё одна опасность активного использования автомобильного транспорта – кислотные дожди, возникающие из-за воздействия выхлопных газов и загрязнения атмосферы. Они влияют на растительный мир и здоровье людей, меняют состав почвы, разрушают здания и памятники, а также сильно загрязняют водоёмы и делают их воду непригодной для использования и проживания.

Пути решения проблемы

Экологические проблемы автомобильного транспорта в современном мире неизбежны. Но всё же их можно решить, если действовать комплексно и глобально. Рассмотрим основные пути решения проблем, связанных с эксплуатацией автомобилей:

  1. Чтобы сократить выбросы выхлопных газов, негативно влияющих на окружающую среду, следует использовать качественное очищенное топливо. Зачастую попытки сэкономить приводят к покупке бензина, содержащего опасные соединения.
  2. Разработка принципиально новых типов двигателей автомобильного транспорта, использование альтернативных источников энергии. Так, в продаже стали появляться электромобили и гибриды, работающие на электричестве. И хотя пока таких моделей немного, возможно, в будущем они станут более популярными.
  3. Соблюдение правил эксплуатации автомобиля. Важно вовремя устранять неполадки, обеспечить постоянное и комплексное обслуживание, не превышать допустимые нагрузки, придерживаться касающихся управления рекомендаций.
  4. Экологическая обстановка наверняка улучшится, если разработать и использовать очистное и фильтрующее оборудование, которое сократит объёмы вредных соединений, выделяемых автомобильным транспортом.
  5. Реконструкция двигателя автомобиля с целью повышения КПД и сокращения объёмов расходуемого топлива.
  6. Использование других видов транспорта, например, троллейбусов и трамваев.

Используйте автотранспорт рационально и старайтесь сокращать его негативное влияние на окружающую среду.

Гражданская авиация России перевозит в год около 74 млн пассажиров, в том числе примерно половину - на международных авиалиниях (2012 г.). Открываются новые авиалинии, более половины из них приходится на районы Крайнего Севера, Сибири и Дальнего Востока. Специфика влияния воздушного транспорта на окружающую среду состоит в значительном шумовом воздействии и выбросе загрязняющих веществ.

Рост числа самолето-вылетов приводит к увеличению площади зашумлен ия по наиболее важному показателю - эквивалентному уровню шума в дневное и ночное время суток. Сверхнормативному воздействию авиационного шума подвергается около 5 млн человек, включая пассажиров, работников аэропортов, жителей прилегающих территорий.

Основным источником шума являются авиадвигатели самолетов и вертолетов. Шумовое воздействие их распространяется не только на территорию аэропорта и близлежащие районы, но также ощутимо по всей трассе полета и воспринимается многими людьми. Шум также создают вспомогательные силовые установки самолетов, спецавто- транспорт различного назначения, автомобили с тепловыми и ветровыми установками, сделанные на базе отработавших летный ресурс авиадвигателей, оборудование стационарных объектов, на которых проводят техническое обслуживание и ремонт летательных аппаратов. Уровни шума достигают на перронах аэропортов - 100 дБ А, в помещениях диспетморских служб от внешних источников - 90-95 дБА, внутри зданий аэровокзалов - 75 дБ А.

Шум от турбореактивного двигателя (ТРД) и турбореактивного двухконтурного двигателя (ТРДД) создается реактивной струей, вентилятором, компрессором, турбиной, камерой сгорания.

Шум от самолета с турбовинтовым двигателем (ТВД) и вертолета в основном исходит от вращающегося винта. Различают шум вращения , который возникает из-за действия на лопасти винта аэродинамических сил сопротивления вращению и тяге, и шум вихревой , являющийся следствием срыва вихрей с вращающихся лопастей. При работе соосных винтов вертолета, вращающихся в противоположных направлениях, образуется шум взаимодействия. Он может возникать и при работе одиночного винта, если винт расположен на небольшом расстоянии от фюзеляжа или крыла. Тогда в момент прохождения лопасти рядом с ними возникают пульсации давления воздушных струй, приводящие к шуму.

Вращение винта создает вибрацию при работе авиадвигателей, которая снижает надежность конструкции, приводит к большей утомляемости экипажа и пассажиров.

Уровень шума, создаваемого самолетами и вертолетами, зависит:

  • от интенсивности полетов и их распределения по времени суток;
  • направления взлетно-посадочной полосы и трасс пролетов самолетов;
  • типов летательных аппаратов.

Вспомогательные силовые установки (ВСУ) служат для запуска основных двигателей, работы системы кондиционирования воздуха, заряда аккумуляторных батарей и других нужд. Они выполняются на базе поршневых двигателей и входят в комплект оборудования современных самолетов. Шум от ВСУ имеет высокочастотный спектр и интенсивность в пределах 135 дБ А, на удалении 25 м - 90 дБ А. Их шум ощущается только на территории аэропортов поблизости от самолета.

Аэродромный спецавтотранснорт также является источником шума. Наибольший шум создают тепловые, ветровые и обдувочные машины (ТВОМ) при работе установленных на них авиадвигателей на режимах пониженной мощности. Автомобили-топливозаправщики, тягачи, автопогрузчики, автолифты создают шум, соизмеримый с шумом обычного грузового автомобиля. Установленное на спецмашинах технологическое оборудование вызывает в процессе работы дополнительный шум.

На авиационно-технических базах (АТБ) и ремонтных заводах гражданской авиации имеются отдельные участки со значительным шумовым воздействием.

Заготовительный участок оборудован листовыми ножницами и роликовыми ножами, с помощью которых осуществляют резку стальных листовых заготовок. Их работа сопровождается шумом. Падающие на пол отрезанные заготовки увеличивают шум.

Участок механической обработки имеет сверлильные, токарные, фрезерные и другие станки. Они создают повышенный шумовой фон различной тональности.

На участках штамповки выполняют холодную штамповку, гибку и вырубку заготовок, пробивку отверстий с помощью давильных и штамповочных прессов и другие работы. При этом создается импульсный шум высокой интенсивности.

На участках сварки шум исходит от сварочных трансформаторов и при механической доводке сваренных изделий (зиговка, рихтовка).

Участок сборки характеризуется шумом при пневмо- клейке, работе сверлильных станков, прессов, зигмашин и т.п.

Негативное воздействие различных авиационных источников шума в первую очередь сказывается на летно-подъемном составе, инженерах и техниках производственных подразделений. В меньшей степени шум испытывают весь персонал аэропортов, авиапассажиры и посетители. Жители авиагородков и расположенных поблизости населенных пунктов подвержены шуму от пролетающих самолетов.

Для снижения шумового воздействия вокруг аэропортов устанавливаются санитарно-защитные зоны (СЗЗ). Однако границы СЗЗ вокруг большинства аэропортов не определены. В ряде субъектов РФ аэропорты расположены на удалении 5-20 км от населенных пунктов, но, несмотря на такую отдаленность, проблема авиационного шума стоит остро. Зачастую трассы маршрутов взлета, посадки, разворота проложены над жилыми районами близлежащих населенных пунктов, и максимальный уровень авиационного шума на территории жилой застройки достигает 70-91 дБ А, значительно превышая допустимый уровень.

Разновидностью шумового воздействия является звуковой удар. Он возникает при полете самолетов со сверхзвуковой скоростью. Механизм действия звукового удара основан на образовании ударной волны и импульсного звука.

Ударная волна - распространяющаяся в воздухе со сверхзвуковой скоростью тонкая переходная область, в которой происходит скачкообразное увеличение плотности, давления и температуры вещества. Вокруг самолетов при полете их со сверхзвуковой скоростью создается конус скачков (перепадов) от избыточного давления до резко пониженного (отрицательного). Он движется в направлении несжатого воздуха, при этом иоле давления видоизменяется. При контакте с поверхностью Земли возникает импульсный звук в результате внезапного и быстро исчезающего повышения давления.

Интенсивность звукового удара зависит от формы и массы самолета, высоты и скорости полета. Увеличение массы самолета приводит к возрастанию интенсивности звукового удара. Чтобы учесть имеющиеся ограничения по звуковому удару, фирмы-разработчики сверхзвуковых самолетов ведут поиски такой формы самолета, которая позволит снизить силу ударной волны.

Увеличение высоты полета вплоть до 17-18 тыс. м снижает ударное воздействие. Дальнейший рост высоты не дает эффекта. Скорости полета в зазвуковой области влияют на интенсивность звукового удара незначительно.

Звуковой удар оказывает неблагоприятное воздействие на биогеоценозы. Среди животных наиболее подвержены его действию высокочувствительные виды млекопитающих и птиц. К ним относятся лошади, северные олени, морские котики и др. Механическое воздействие звукового удара проявляется в сходах снежных лавин, камнепадах и т.д. Поэтому существуют ограничения полетов сверхзвуковых самолетов над горными районами. Ударная волна приводит к разрушению легких построек и вибрации конструкций.

Человек ощущает действие звукового удара кратковременно (0,2-0,3 с), но оно усиливается из-за внезапности. У человека и животных звуковой удар вызывает испуг и другие виды психофизиологической реакции.

Установлено также влияние сверхзвуковых самолетов на величину озонового слоя атмосферы. В следе сверхзвукового самолета происходит большое число (свыше 300) физико-химических реакций и образуются конденсационные шлейфы. Компоненты реактивных струй - гидроксил, атомарный кислород, оксиды серы и др. разрушают атмосферный озон. Кроме того, соединения серы влияют на образование облаков, изменяющих тепловой баланс Земли. В связи с этим, по последним исследованиям, мировой парк сверхзвуковой авиации (гражданской и военной) не должен превышать 500-600 единиц.

В настоящее время полеты гражданских сверхзвуковых самолетов не выполняются - последний самолет «Конкорд» прекратил полеты в 2003 г. Во время эксплуатации «Конкорду» разрешали преодолевать звуковой барьер лишь над океаном или безлюдной местностью, поэтому применение лайнера в обычных условиях полетов над населенными районами оказалось невозможным. В Японии ведутся разработки сверхзвукового самолета нового поколения NEXST (National Experimental Supersonic Transport), рассчитанного на перевозку 300 пассажиров. Ожидается, что он будет расходовать на 75% меньше топлива, чем «Конкорд», и будет отвечать современным требованиям по уровню шума (сравнимому с Boeing 747). В коммерческую эксплуатацию новый самолет будет принят не ранее 2020 г.

Сверхзвуковые самолеты во время полета оказывают также механическое воздействие на атмосферу, в результате чего возникает сильное перемешивание ее слоев и выбросы от самолета транспортируются по спирали в тропосферу, достигая земли.

Преподаватель:
Гиззатуллина Алсу Нарисовна

Исследовательская работа на тему "Какие экологические проблемы существуют в авиации?"
План.

Введение
Недостатки современной авиации
3.1. Загрязнение воздуха химическими веществами
3.2. Самолеты сильно шумят
Безопасность в авиации как признак заботы об экологии
Способы уменьшения вреда окружающей
5.1. Лёгкие и вместительные лайнеры
5.2. Облегчение корпуса и "начинки"
5.3. Новый тип топлива
5.4. Новые способы пилотирования
5.5. Большие по размерам, но лёгкие по массе двигатели.
Заключение
Литература
Введение.

Авиации уже больше века, однако, в последнее время она переживает просто сумасшедший бум. В 1994 году в небо поднялось 1.25 миллиардов человек, а в 2012 - уже более 3 миллиардов! Такой взрывной поток пассажиров будет продолжаться и в будущем. Но то, что доставляет радость туристам, плохо для природы в целом.

На совести воздушного транспорта целых 5% от общего числа вредных выбросов (примерно в 8 раз меньше, чем от автомобильного транспорта), создающих парниковый эффект и ведущих к глобальному потеплению. Большинство развитых стран пытаются хоть как-то ограничить выбросы вредных газов, призывая граждан воздерживаться от поездок на автомобилях, а промышленников - переходить на экологически чистые материалы. Но вот авиация со своими вредными выхлопами остается «священной коровой»...

Впервые об экологических проблемах, наносимых авиацией, заговорили в Чикаго - 7 декабря 1944 года там был подписан документ под названием «Конвенция о международной гражданской авиации» (или «Чикагская конвенция»). Данный документ вводил некоторые экологические стандарты в международную авиацию в целом. Конвенция прошла успешное испытание временем и сегодня остается надежной основой развития и согласованного функционирования международной гражданской авиации.

Также в 2004 году ICAO установила три основные цели в области окружающей среды:

Ограничение или снижение влияния авиационной эмиссии на местное качество воздуха.
Ограничение или сокращение количества людей, подвергаемых значительному воздействию авиационного шума.
Ограничение или уменьшение воздействия эмиссии парниковых газов на мировой климат в результате деятельности авиации.

ICAO также рассматривает рыночные варианты решения проблем, связанных с экологией, на основе участия авиации в обменах квотами на эмиссию. Сама идея реализации такого новшества пришла канадскому экономисту Джону Дейлсому в 1968 году. Дэйлс предлагал создать рынок прав на загрязнение, чтобы ограничить загрязнение водоёмов промышленностью. Революционно новым в этой идее было то, что правительство могло установить конкретный объём суммарной загрязняемости в качестве экологической цели. После установления ограничения на выброс определённых веществ на определённой территории и за конкретный период времени, начинается распределение соответствующего количества квот. Эмиссии, совершённые без определённой квоты, облагаются штрафом.

Кстати, новая система торговли квотами на выбросы в атмосферу двуокиси углерода начала действовать в Европе с 1 января 2012 года. На данный закон отреагировали буквально все промышленно развитые страны, включая Россию: в Москве прошел двухдневный саммит, по итогам которого 29 стран-участниц подписали декларацию, которая в скором времени была отправлена в Евросоюз.

Комитет по охране окружающей среды от влияния авиации при ICAO постоянно озабочен качеством окружающей среды. В специальном отчете о влиянии авиации на глобальную атмосферу, опубликованный Межгосударственной комиссией по изменению климата говорится, что деятельность авиации пагубно сказывается на озоновом слое, т.е. разрушает его.

Цель работы:
Изучить, какие экологические проблемы существуют в авиации.
Задачи:
1. Рассмотреть формы вредного физического воздействия на окружающую среду.

Изучить влияние на экологию химических элементов горения двигателя самолета.

2. Выяснить, какие способы уменьшения вреда окружающей среде существуют в авиации.

Рассмотреть технические характеристики самолетов, такие, как вместимость, масса, площадь крыла и т.п.

Недостатки современной авиации.

На диаграмме представлены два основных недостатка современных самолетов:

Давайте рассмотрим эти недостатки подробнее:

Первый недостаток - - двигатели самолетов выбрасывают газы, создающие парниковый эффект.

Современные самолеты летают на авиационном керосине - топливе, вырабатываемом из нефти. В основном в состав нефтепроизводного топлива входят углерод (С) и водород (H). При сгорании в двигателе атомы углерода и водорода отделяются друг от друга, чтобы соединиться с молекулами кислорода из воздуха. Получаются два новых вещества - углекислый газ и вода. Именно водяной пар, вырываясь из сопл, превращается в туман, образуя длинные белые следы. Углекислый газ и водяной пар задерживают тепло, излучаемое Землей, что само собой «помогает» развитию парникового эффекта.

Теоретически при сгорании керосина ничего кроме углекислого газа и воды образоваться не должно. Но на деле все не так. Во время работы двигателей самолетов происходит выброс отработанных газов, прямых и побочных продуктов сгорания топлива, которые могут быть причиной нежелательного воздействия на окружающую среду. Это явление называется «эмиссия».

Эмиссия оксидов углерода, несгоревших углеводородов и частиц углерода — результат неполного сгорания топлива в двигателе. Эмиссия оксидов азота — следствие высокой температуры в зоне горения топлива, при которой становиться возможным окисление содержащегося в воздухе азота. Именно оксиды азота ведут к истощению озонового слоя Земли.


Итак, взгляните на таблицу. Здесь представлены коэффициенты для скорости эмиссии оксидов углерода и азота, несгоревших углеводородов:

Коэффициент
Температура воздуха, C°
-20
-10
0
10
20
30
Kq (NxHy)
0.74
0.81
0.88
0.96
1.0
1.11
Kq (CxHy,CmHn)
1.3
1.2
1.1
1.04
1.0
1.0
По таблице видно, что индексы оксидов углерода и несгоревших частиц топлива тем больше, чем ниже температура и давление в камере сгорания. Они максимальны при рулении самолёта в аэропорту, при взлёте достигают минимума и остаются близкими к минимуму во всех полётных фазах. Для оксидов азота закономерность обратная - при повышении температуры коэффициент возрастает, это может происходить при взлете самолета и дальнейшем полете.

Как уже было отмечено, спрос на авиатранспорт в мире будет расти, на диаграмме представлены средние значения темпов роста пассажиропотока, сжигаемого топлива для их перевозки и эмиссии оксидов азота, которая происходит в результате сгорания горючего.

По таблице видно, что в период 1984-1992 и 1992-2016 годов рост спроса на авиатранспорт в среднем не изменяется, количество сжигаемого топлива увеличивается, в сравнении с прошлыми периодами, но при этом эмиссия оксидов азота уменьшается, что указывает на модернизацию двигателей и усовершенствование качества топлива.

Приведу несколько шокирующих фактов:

При сгорании одного литра авиационного топлива выделяется более 2.5 кг СО2!
Рейс Москва - Санкт-Петербург, выполняется на самолете Airbus A320 (двухдвигательный авиалайнер с максимальной вместимостью 164 пассажира), авиалайнер пролетает 750 км и сжигает около 2700 литров авиационного топлива. Количество выбросов углекислого газа составляет около 7 тонн. Представьте себе масштабы загрязнений только по этому популярному маршруту, частота рейсов по которому может достигать двух-трех рейсов в час!
За время полёта из Лондона в Нью-Йорк и обратно генерируется примерно столько же парниковых газов, сколько и при отоплении одного сельского дома в течение одного года.
В Евросоюзе и в России выбросы газов от авиации увеличились на 87% по сравнению с 1990 годом.

Второй недостаток - самолеты сильно шумят.

Что же значит, жить рядом с аэропортом? Это каждодневный ужас; людям, живущим в непосредственной близости к аэродромам, приходится наблюдать адский балет из влетов и посадок. Двигатели реактивных самолетов - это и есть машины для создания звуков, кроме того, при посадке самолеты давят своей огромной массой на воздух, что дает еще один источник сильного шума.

Официальные данные свидетельствуют, что в России примерно 35 млн. человек подвержены существенному, превышающему нормативы, воздействию транспортного шума. От авиационного шума страдают более миллиона человек.

Экспериментально доказано, что антропогенное шумовое воздействие неблагоприятно сказывается на организме человека и сокращает продолжительность жизни. Было установлено, что продолжительное пребывание в местах с шумовым загрязнением ведет к физиологическим и психическим нагрузкам - бессонница, гипертония. Люди становятся раздражительными и нервными. Исследование, организованное Гарвардской школой общественного здравоохранения и Бостонским университетом, выявило связь между воздействием шума от самолетов и уровнем госпитализации в связи с сердечно-сосудистыми заболеваниями. Оказалось, что превышение звука на 10 дБ повышает риск заболеваемости сердечно-сосудистыми недугами на 3.5%. Причем высокий уровень госпитализации замечен в районах, где постоянный уровень шума не опускается отметки ниже 55 дБ. А в местах, где уровень шума колеблется в районе 65 дБ госпитализаций по причине инсультов выше на 25%, по сравнению с теми, кто испытывает шумовую нагрузку в 50 дБ.

Безопасность в авиации как признак заботы об экологии.

Население, проживающее в окрестностях аэропорта, следует рассматривать, как объект окружающей среды. Размещение аэропортов должно отвечать особым требованиям не только по условиям обеспечения нормативного уровня шума, и загрязнения воздуха, но по гарантированию безопасности населения на прилегающей территории.

За последние 20 лет явного улучшения относительных показателей безопасности полетов не произошло. По данным компании «Боинг» при развитии такого сценария, авиакатастрофы будут происходить по всему миру каждые 10-12 дней!

Ежегодно в ЕС более 45 тыс. человек погибает и более 1.6 млн. получают увечья в транспортных происшествиях. Наибольшая часть жертв приходится на автомобильный сектор. Ущербы от авто- и авиакатастроф только в ЕС и в России оцениваются в 45 млрд. евро в год: 15 млрд. - страхование и ремонт средств передвижения (автомобили и самолеты), 30 млрд. - фатальные экономические потери от ликвидации различного рода последствий (в том числе и экологические). При избегании хотя бы одной аварии можно сохранить в среднем более 1 млн. евро, не говоря о человеческих жизнях. Внешние расходы транспортного сектора, которые в основном определяются экологическим ущербом (шум, загрязнение воздуха) и транспортными происшествиями составляют в основном 4% от общего валового национального продукта.

По диаграмме видно, что в 1991 году расходы на ликвидацию железнодорожных катастроф в большинстве стран Европы доминировали над авиационными расходами.

Стоит отметить, что авиационный транспорт является одним из самых безопасных среди других.

Сравнение показателей смертности для отдельных видов транспорта в ЕС за 1997 год.

Вид транспорта
Количество жертв
Уровень смертности (на 100 тыс. чел.)
Объем транспортных работ
(млрд. км.)
Дорожный
42500
11.3 (!)
3860
Воздушный
109
0,051
240
Железнодорожный
108
0,029
270
Водный
100
0,021
30

Сравнение внешних транспортных затрат определенных в Европе и Канаде приводится в нижней таблице.

Стоимость загрязнения воздуха и транспортных происшествий в % от стоимости транспортных услуг.

Транспортные перевозки
Европа
Канада
Авиационные
16
7
Железнодорожные
4
21
Автомобильные
14
10-57

Способы уменьшения вреда окружающей среде.

Итак, мы рассмотрели 2 недостатка современных самолетов, теперь рассмотрим способы уменьшения вреда окружающей среде.

Первый и самый вероятный способ - делать более вместительные лайнеры.

Чем самолет тяжелее, тем он больше сжигает топлива, а значит, сильнее загрязняет окружающую среду. Но если самолет берет на борт больше пассажиров, но это меняет дело. Сравним, к примеру, аэробусы Боинг 747-100 и пассажирский самолет с той же серии 747-8:

Характеристика
Boeing 747-100
Boeing 747-8
Масса
162.4 тонн
214.5 тонн
Вместимость
366 пассажиров
467 пассажиров
Площадь крыла
511 м3
567 м3
Потребление топлива
20.3 литров/км
15.4 литров/км
По таблице видно, что более вместительный 747-8 тратит 15.4 литра на километр, при своей вместимости 467 человек и массе 215 тонн, а 747-100, перевозя 366 пассажиров и имея массу 162 тонны, тратит 20.3 литра на километр.

Второй наиболее практичный метод - облегчить корпус и использовать меньше краски на фюзеляжах и крыльях.

Для уменьшения начальной массы самолета можно применять пластики с угле-, стекло- волоконным укреплением. Данные материалы легче и прочнее той же самой стали.

Вот некоторые плюсы композитных материалов:

Высокая удельная прочность
Высокая износостойкость
Лёгкость

Но есть и минусы:

Стоимость
Гигроскопичность - свойство поглощать влагу. Именно этот «минус» стал причиной авиакатастрофы American Airlines Flight 587. В киле периодически скапливалась влага.
Высокий удельный объем, что очень плохо для сверхзвуковой авиации, ведь незначительное увеличение объема самолета нарушает его аэродинамические свойства.
Токсичность. Она является таковой преградой использования некоторых композитных материалов в авиации. При эксплуатации такие материалы могут выделять опасные для человека пары. А при горении выделение опасных веществ увеличивается в геометрической прогрессии.
Облегчение лайнеров также возможно провести за счет внутренней начинки - интерьера. Уменьшение массы самолёта возможно, поработав с креслами. Ведь именно они - самые многочисленные изделия в салоне после крепежа. Как ни странно, но основная «потеря веса» кресла происходит не по внедрению новых материалов, а по тщательному, грамотному проектированию. Второй на очереди идет уборная. И тут инженеры ухитряются что-то сделать: заменяют алюминиевые каркасы на углепластики, устанавливают лёгкую сантехнику, делают новые системы слива воды.

По скромным расчетам компании Боинг, ограничив до минимума украшения на фюзеляже, можно сэкономить колоссальный объем топлива - более 100 тысяч литров в год!

Следующий способ заключается в смене типа топлива.

Много компаний, производящих различное топливо, заинтересованы в создании биотоплива для самолетов. В рамках испытаний британской компании Virgin Atlantic Airways, из лондонского аэропорта «Хитроу» в амстердамский «Схипхол» вылетел Боинг-747 на биотопливе из кокосового и масла бабассу. Полет прошел успешно, но главный инженер отметил, что для производства такого большого количества топлива нужны: большая площадь для посадки растений и большое количество деревьев, вырубка которых приведет к резкому скачку парникового эффекта.

Суть экотоплива в том, что часть углекислого газа, вырабатываемого при сгорании, будет поглощаться растениями. Также в планах есть и водород, имеются даже летательные аппараты с водородными двигателями, но дело в том, что дешево производить водород, не используя при этом нефть, пока не научились.

Конечно, изучено большое количество методов добычи водорода и без использования нефти и угля, но для этого нужно либо большое количество электричества или дорогих и редких металлов. Примером является способ добычи водорода из воды при помощи солнечной энергии, организованный Университетом Нового Южного Уэльса, Австралия. Реакция получения водорода проводится в присутствии солнечной энергии, которая далее преобразуется в электричество, воды и диоксида титана.

Есть также способ добычи H2 методом электролиза. Но он малоперспективен, ведь для того, чтобы получить то же самое электричество, опять-таки нужна нефть или газ. И использовать энергию ветра или «мирного атома» тоже не перспективно, ведь для получения водорода, на котором могли бы ездить все машины Британии, нужно было бы заставить все побережье острова ветряками или построить 100 АЭС, что само собой небезопасно.

Еще один способ - обучение пилотов новым приемам пилотирования при взлете, посадке; рациональная организация воздушного движения (трассы так называемого «минимального шума», организация полетов в ночное время, оптимальное соотношение между интенсивностью ночных и дневных полетов).

Таким способом воспользовалось и Управление воздушного транспорта ФРГ (DFS). Оно решило опробовать во Франкфуртском аэропорте новую систему прилета самолетов, чтобы снизить шум, мешающий живущим неподалеку от аэропортов гражданам. По новым правилам, самолеты должны подлетать к взлетно-посадочной полосе по единому маршруту, а не по параллельным, как сейчас.
Плюс этой системы в том, что точка, в которой самолеты начинают выстраиваться в колонну, располагается намного выше, чем нынешние маршруты подлета. Таким образом, уровень шума от них будет ниже. Такая система уже функционирует в аэропорту Осло.

В добавок к способам уменьшения звуковых колебаний вокруг аэропортов можно добавить проведение строительно-планировочных мероприятий (новые взлетно-посадочные полосы, к примеру). Также нужна строгая организация жилой застройки в зонах с повышенным уровнем звука вблизи аэропортов. В некоторых промышленных центрах Европы есть специальные комиссии по борьбе с шумом, куда входят органы санитарной инспекции и транспортных служб.

И последний, наверно, самый кардинальный способ - оснащение самолетов большими, но легкими по массе двигателями.

Для того чтобы уменьшить шум струи, используют двухконтурные турбовентиляторные двигатели - вид двухконтурных турбореактивных двигателей с высокой степенью двухконтурности. В них, часть всасываемого воздуха, протекая внутри двигателя, обходит камеру сгорания, в результате увеличивается тяга, но уменьшается шум. Дело в том, что на выходе из двигателя находящийся под меньшим давлением холодный воздух смешивается с сильно сдавленным горячим из камеры сгорания. Чтобы добиться серьезного уменьшения уровня шума, сами двигатели нужно делать как можно большего размера. Но из-за ограничения по весу сейчас это невозможно. Однако, на помощь приходят материалы нового поколения, называемые «композитные». Двигатели из таких материалов будут сочетать в себе небольшой вес, внушительные размеры и малошумность.

Заключение.

На данный момент сказать, что в авиации нет никаких проблем, практически невозможно - много вопросов касающихся экономики, безопасности и экологии. Все эти проблемы решимы, но для этого нужно время. Мир не стоит на месте: все, что существовало раньше, модернизуется или приходит в негодность, и на место старого приходит что-то абсолютно новое. То же самое происходит и в авиации. На смену авиационному керосину в скором времени придет новое биотопливо, двигатели самолетов станут большими, но лёгкими по массе; композитные материалы в скором времени столкнут «с пьедестала» металл и алюминий. Все больше и больше компаний, производящих самолёты, пытаются придать лайнерам новую форму, интегрируя крылья и фюзеляж.

В своем исследовании я, рассмотрев недостатки современной авиации и пути их решения, пришел к выводу, что хоть и авиация наносит вред окружающей среде, ее популярность будет все расти и расти, поэтому решение всех нынешних проблем не должно занимать долгое время. Нужно действовать быстро и непромедлительно, ведь без чистой планеты нет нашего будущего.

Литература.

1.«Энциклопедия Безопасности Авиации» / Н. С. Кулика, В. П. Харченко, М.Г. Луцкий - 2008 год.
2. Журнал «Юный Эрудит» №5 (57), май 2007 год.
3. Специальный доклад МГЭИК «Aviation and the Global Atmosphere» / 1999 год с поправками в 2007 году (Перевод с английского).
4. «Социальная экология» / Ю.Г. Марков - 2004 год.
5. Журнал «Вокруг Света» №7 (2790) июль 2006 год.
6. Материалы из ru.wikipedia.org
7. «Экология, здоровье и охрана окружающей среды в России» / В.Ф. Протасов - 2000 год.
8. Официальный сайт Европы: europa.eu
9. Официальный сайт ICAO: icao.int
10. «Охрана окружающей среды» / Ю. В. Новиков - 1987 год.
11. Интернет-портал «Российская газета»: rg.ru
12. Другие интернет ресурсы, форумы.