Из чего состоит Земля: внутреннее и внешнее строение. Внутреннее строение Земли (ядро, мантия, земная кора)

1. Строение Земли

Земля по своей форме близка к шару и подобна другим планетами Солнечной системы. Для неточных расчетов принимают, что Земля – шар с радиусом, равным 6370 (6371) км. Более точно фигура Земли – трехосный эллипсоид вращения , хотя ее форма не соответствует ни одной правильной геометрической фигуре. Иногда ее называют сфероидом . Считается, что она имеет форму геоида . Эта фигура получается, если провести воображаемую поверхность, которая совпадает с уровнем воды в океанах, под континенты.

Наибольшая глубина (Марианская впадина) – 11521 (11022) м; наибольшая высота (г. Эверест) – 8848 м.

На 70,8 % поверхность занята водами и только 29,2 % - сушей.

Размеры Земли можно охарактеризовать следующими цифрами:

Полярный радиус ~ 6 357 км. Экваториальный радиус ~ 6 378 км.

Сплюснутость - 1/298,3. Окружность по экватору ~ 40 076 км.

Поверхность Земли - 510 млн. км 2 . Объем Земли - 1 083 млрд. км 3 .

Масса Земли - 5,98.10 27 т Плотность – 5,52 см 3 .

Плотность увеличивается с глубиной: на поверхности – 2,66; 500 км – 3,33;. 800 км – 3,76; 1300 км – 5,00; 2500 км – 7,40; 500 км – 10,70; в центре – до 14,00 г/см 3 .

Рис.1. Схема внутреннего строения Земли

Земля состоит из оболочек (геосфер) – внутренних и внешних.

Внутренние геосферы – земная кора, мантия и ядро.

1. Земная кора . Мощность земной коры в различных районах Земного шара неодинакова. Под океанами она изменяется от 4 до 20 км, а под континентами – от 20 до 75 км. В среднем же для океанов ее мощность составляет 7…10 км, для континентов – 37…47 км. Средняя толщина (мощность) составляет всего 33 км. Нижняя граница земной коры определяется резким увеличением скорости распространения сейсмических волн и называется разделом Мохоровичича (юг. сейсмограф), где отмечено скачкообразное увеличение скорости распространения упругих (сейсмических) волн с 6,8 до 8,2 км/с. Синоним – подошва земной коры .

Кора имеет слоистое строение. В ней выделяют три слоя: осадочный (самый верхний), гранитный и базальтовый .

Мощность гранитного слоя увеличивается в молодых горах (Альпы, Кавказ) и достигает 25…30 км. В районах древней складчатости (Урал, Алтай) наблюдается уменьшение мощности гранитного слоя.

Базальтовый слой распространен повсеместно. Чаще базальты встречаются уже на глубине 10 км. В виде отдельных пятен они внедряются в мантию на глубине 70…75 км (Гималаи).

Границу раздела между гранитным и базальтовым слоем называют поверхностью Конрада (австр. геофизикКонрад В.), также характеризующаяся скачкообразным увеличением скорости прохождения сейсмических волн.

Выделяют два типа земной коры: континентальную (трехслойную) и океаническую (двухслойную). Граница между ними не совпадает с границей материков и океанов и проходит по дну океанов на глубинах 2,0…2,5 км.

Континентальный тип коры состоит из осадочного, гранитного и базальтового слоев. Мощность зависит от геологического строения района. На высоко поднятых участках кристаллических пород осадочный слой практически отсутствует. Во впадинах же его мощность достигает иногда 15…20 км.

Океанический тип коры состоит из осадочного и базальтового слоев. Осадочный слой покрывает практически все дно океанов. Мощность его колеблется в пределах сотен и даже тысяч метров. Базальтовый слой распространен также повсеместно под дном океанов. Мощность земной коры в океанических бассейнах неодинаковая: в Тихом океане она составляет 5…6 км, в Атлантическом – 5…7 км, в Северном Ледовитом – 5…12 км, в Индийском – 5…10 км.

Литосфера – каменная оболочка Земли, объединяющая земную кору, подкорковую часть верхней мантии и подстилаемая астеносферой (слой пониженной твердости, прочности и вязкости).

Таблица 1

Характеристика оболочек твердой Земли

Геосфера

Интервал глубин, км

Плотность, г/см 3

от объема, %

Масса, 10 25 т

от массы Земли, %

Земная кора

Раздел Мохоровичича

Внешняя В

Переходный слой С

Раздел Вихерта-Гутенберга

Внешнее Е

Переходный слой F

Внутреннее G

2. Мантия (греч. покрывало, плащ) располагается на глубине 30…2900 км. Ее масса составляет 67,8 % массы Земли и более чем в 2 раза превышает массу ядра и коры, вместе взятых. Объем составляет 82,26 %. Температура поверхности мантии колеблется в интервале 150…1000 °С.

Мантия состоит из двух частей – нижней (слой D) с подошвой ~ 2900 км и верхней (слой B) до глубины 400 км. Нижняя мантия – Mn, Fe, Ni. В ней распространены ультраосновные породы, поэтому оболочку нередко называют перидотитовой или каменной. Верхняя мантия – Si, Mg. Она активна, содержит очаги расплавленных масс. Здесь зарождаются сейсмические и вулканические явления, горообразовательные процессы. Существует и переходной слой Голицына (слой С) на глубине 400…1000 км.

В верхней части мантии, подстилающей литосферу, находится астеносфера . Верхняя граница глубиной около 100 км под материками и около 50 км под дном океана; нижняя – на глубине 250…350 км. Астеносфера играет большую роль в происхождении эндогенных процессов, протекающих в земной коре (магматизм, метаморфизм и т.д.). По поверхности астеносферы происходит перемещение литосферных плит, создающих структуру поверхности нашей планеты.

3. Ядро Земли начинается с глубины 2900 км. Внутреннее ядро – твердое тело, внешнее ядро – жидкость. Масса ядра до 32 % массы Земли, а объем – до 16 %. Земное ядро почти на 90 % состоит из железа с примесью кислорода, серы, углерода и водорода. Радиус внутреннего ядра (слой G), состоящего из железо-никелевого сплава ~ 1200…1250 км, переходный слой (слой F) ~ 300…400 км, радиус внешнего ядра (слой E) ~ 3450…3500 км. Давление - около 3,6 млн. атм., температура - 5000 °С.

В отношении химического состава ядра существуют две точки зрения. Одни исследователи считают, что ядро, подобно железным метеоритам, состоит из Fe и Ni. Другие предполагают, что, аналогично мантии, ядро сложено силикатами Fe и Mg. Причем вещество находится в особом металлизированном состоянии (электронные оболочки частично разрушены).

Внешние геосферы – гидросфера (водная оболочка), биосфера (сфера жизнедеятельности организмов) и атмосфера (газовая оболочка).

Гидросфера покрывает земную поверхность на 70,8 %. Средняя мощность ее около 3,8 км, наибольшая – > 11 км. Образование гидросферы связано с дегазацией воды из мантии Земли. Она находится в тесной взаимосвязи с литосферой, атмосферой и биосферой. Общий объем гидросферы по отношению к объему земного шара не превышает 0,13 %. Более 98 % всех водных ресурсов Земли составляют соленые воды океанов, морей и др. Общий объем пресных вод равен 28,25 млн. км 3 или около 2 % всей гидросферы.

Таблица 2

Объем гидросферы

Части гидросферы

Объем всей воды,

Объем пресной воды, тыс.м 3

Интенсивность водообмена, лет

Мировой океан

Подземные воды

Почвенная влага

Пары атмосферы

Речные воды

Вода в живых организмах (биологическая)

* – вода, подвергаемая активному водообмену

Биосфера (сфера жизнедеятельности организмов) связана с поверхностью Земли. Она находится в постоянном взаимодействии с литосферой, гидросферой и атмосферой.

Атмосфера. Верхней ее границей является высота (3 тыс. км), где плотность почти уравновешивается с плотностью межпланетного пространства. Химически, физически и механически воздействует на литосферу, регулируя распределение тепла и влаги. Атмосфера имеет сложное строение.

От поверхности Земли вверх она подразделяется на тропосферу (до 18 км), стратосферу (до 55 км), мезосферу (до 80 км), термосферу (до 1000 км) и экзосферу (сфера рассеивания). Тропосфера занимает около 80 % общей атмосферы. Ее мощность 8…10 км над полюсами, 16…18 км – над экватором. При средней для Земли годовой температуре + 14 о С на уровне моря у верхней границы тропосферы она падает до – 55 о С. У поверхности Земли наиболее высокая температура достигает 58 о С (в тени), а наиболее низкая падает до – 87 о С. В тропосфере происходят вертикальные и горизонтальные перемещения воздушных масс, во многом определяющие круговорот воды, теплообмен , перенос пылеватых частиц.

Магнитосфера Земли – самая внешняя и протяженная оболочка Земли, представляющая собой околоземное пространство, где напряженность земного электромагнитного поля превышает напряженность внешних электромагнитных полей. Магнитосфера имеет сложную, непостоянную по конфигурации форму и магнитный шлейф. Внешняя граница (магнитопауза) установлена на расстоянии ~ 100…200 тыс. км от Земли, где магнитное поле ослабевает и становится соизмеримой с космическим магнитным полем

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Как часто в поисках ответов на свои вопросы, о том, как устроен мир, мы смотрим вверх на небо, солнце, звезды, заглядываем далеко-далеко за сотни световых лет в поисках новых галактик. А ведь, если посмотреть под ноги, то под ногами существует целый подземный мир из которого состоит наша планета - Земля!

Недра Земли это тот самый загадочный мир под ногами, подземный организм нашей Земли, на которой мы живем, строим дома, прокладываем дороги, мосты и многие тысячи лет осваиваем территории родной планеты.

Этот мир - тайные глубины недр Земли!

Строение Земли

Наша планета относится к планетам земной группы, и так же, как и другие планеты, состоит из слоёв. Поверхность Земли состоит из твердой оболочки земной коры, глубже находится крайне вязкая мантия, а в центре расположено металлическое ядро, которое состоит из двух частей, внешняя - жидкая, внутренняя - твердая.

Интересно, многие объекты Вселенной настолько хорошо изучены, что о них знает каждый школьник, в космос на далекие сотни тысяч километров отправляются космические аппараты, но в самые глубинные недра нашей планеты по прежнему забраться остается непосильной задачей, поэтому то что находится под поверхностью Земли по прежнему остается большой загадкой.

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами , главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary - первичные ), более «медленные» поперечные волны называют S-волны (от англ. secondary - вторичные ). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км.

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км . На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга , хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км , делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора , ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой , состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная , или кристаллическая , кора , образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» - сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.


Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой - подкоровая мантия - простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» - слабый и «sphair» - сфера ); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone . Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом . м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы - твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии , отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Основная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см 3 ; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см 3 . В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см 3 в подкоровой части до 5,5 г/см 3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см 3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см 3 - происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см 3 .


Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

    сжатием за счет веса вышележащих оболочек (литостатическое давление);

    фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

    различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*10 9 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0 С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0 С. Средняя величина геотермического градиента в верхней части коры составляет 30 0 С/км и колеблется от 200 0 С/км в областях современного активного магматизма до 5 0 С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0 С/км, а в мантии – менее 1 0 С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.


Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации , т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло , возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 10 –4 %, в осадочных породах – 3,2 10 –4 %, в то время как в океанической коре она ничтожно мала: около 1,66 10 –7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло , сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы , обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0 С, на глубине 410 км – 1500 0 С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0 С, на глубине 5150 км – 3300 0 С, в центе Земли – 3400 0 С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 90 0) и наименьшим на экваторе (7-8 0).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe 2 O 4), гематит (Fe 2 O 3), ильменит (FeTiO 2), пирротин (Fe 1-2 S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию - изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака. Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

Внутреннее строение Земли установлено по материалам геофизических исследований (характеру прохождения сейсмических волн). Выделяют три главных оболочки.

1. Земная кора - наибольшая толщина до 70 км.
2. Мантия - от нижней границы земной коры до глубины 2900 км.
3. Ядро - простирается до центра Земли (до глубины 6 371 км).

Граница между земной корой и мантией называется границей Мохоровичича (Мохо ), между мантией и ядром - границей Гутенберга .
Земное ядро делится на два слоя. Внешнее ядро (на глубине от 5 120 км до 2 900 км), вещество жидкое, поскольку поперечные волны в него не проникают, а скорость продольных падает до 8 км/с (см. «Землетрясения»). Внутреннее ядро (от глубины 6 371 км до 5 120 км), вещество здесь находится в твердом состоянии (скорость продольных волн возрастает до 11 км/с и более). В составе ядра господствует железоникелевый расплав с примесью кремния и серы. Плотность вещества в ядре достигает 13 г/куб.см.

Мантия подразделяется на две части: верхнюю и нижнюю.

Верхняя мантия состоит из трех слоев, погружается до глубины 800 - 900 км. Верхний слой, толщиной до 50 км, состоит из твердого и хрупкого кристаллического вещества (скорость продольных волн до 8,5 км/с и более). Вместе с земной корой он образует литосферу - каменную оболочку Земли.

Средний слой - астеносфера (податливая оболочка) характеризуется аморфным стекловидным состоянием вещества, а отчасти (на 10%) имеет расплавленное вязкопластичное состояние (об этом свидетельствует резкое падение скорости сейсмических волн). Толщина среднего слоя около 100 км. Астеносфера залегает на разных глубинах. Под срединно-океаническими хребтами, где толщина литосферы минимальна, астеносфера лежит на глубине нескольких километров. На окраинах океанов, по мере роста мощности литосферы, астеносфера погружается до 60 – 80 км. Под континентами она лежит на глубинах около 200 км, а под континентальными рифтами вновь приподнимается до глубины 10 – 25 км. Нижнийслой верхней мантии (слой Голицина ) иногда выделяют как переходный слой или как самостоятельную часть - среднюю мантию. Опускается он до глубины 800 - 900 км, вещество здесь кристаллическое твердое (скорость продольных волн до 9 км/с).

Нижняя мантия простирается до 2 900 км, сложена твердым кристаллическим веществом (скорость продольных волн возрастает до 13,5 км/с). В составе мантии преобладают оливин и пироксен, ее плотность в нижней части достигает 5,8 г/куб.см.

Земная кора подразделяется на два главных типа (материковая и океаническая) и два переходных (субматериковая и субокеаническая). Типы коры отличаются строением и мощностью.

Континентальная кора, распространенная в пределах материков и зоны шельфа, имеет мощность 30 - 40 км в платформенных областях и до 70 км в высокогорьях. Нижний ее слой - базальтовый (мафический - обогащен магнием и железом), состоит из тяжелых пород, его толщина от 15 до 40 км. Выше лежит состоящий из более легких пород гранито-гнейсовый слой (сиалический - обогащен кремнием и алюминием), толщиной от 10 до 30 км. Сверху эти слои могут перекрываться осадочным слоем, мощностью от 0 до 15 км. Выделенная по сейсмическим данным граница между базальтовым и гранитогнейсовым слоями (граница Конрада ) не всегда четко прослеживается.

Океаническая кора, мощностью до 6 - 8 км, также имеет трехслойное строение. Нижний слой - тяжелый базальтовый , толщиной до 4 - 6 км. Средний слой, мощностью около 1 км, сложен переслаивающимися пластами плотных осадочных пород и базальтовых лав. Верхний слой состоит из рыхлых осадочных пород, толщиной до 0,7 км.

Субматериковая кора, имеющая близкое к материковой коре строение, представлена на периферии окраинных и внутренних морей (в зонах континентального склона и подножья) и под островными дугами, характеризуется резко сокращенной мощностью (до 0 м) осадочного слоя. Причиной такого уменьшения толщины осадочного слоя является большой уклон поверхности, способствующий соскальзыванию накапливающихся осадков. Мощность этого типа коры до 25 км, в том числе базальтового слоя до 15 км, гранитогнейсового до 10 км; граница Конрада выражена плохо.
Субокеаническая кора, близкая по строению к океанической, развита в пределах глубоководных частей внутренних и окраинных морей и в глубоководных океанических желобах. Отличается резким увеличением мощности осадочного слоя и отсутствием слоя гранитогнейсового. Чрезвычайно высокая мощность осадочного слоя обусловлена очень низким гипсометрическим уровнем поверхности – под действием гравитации здесь накапливаются гигантские толщи осадочных пород. Общая толщина субокеанической коры также достигает 25 км, в том числе базальтового слоя до 10 км и осадочного до 15 км. При этом мощность слоя плотных осадочных и базальтовых пород может составлять 5 км.

Плотность и давление Земли также изменяются с глубиной. Средняя плотность Земли составляет 5,52 г/куб. см. Плотность пород земной коры варьирует от 2,4 до 3,0 г/куб. см (в среднем - 2,8 г/куб. см). Плотность верхней мантии ниже границы Мохо приближается к 3,4 г/куб. см, на глубине 2 900 км она достигает 5,8 г/куб. см, а во внутреннем ядре до 13 г/куб. см. Соответственно приведенным данным давление на глубине 40 км равно 10 3 МПа, на границе Гутенберга 137 * 10 3 МПа, в центре Земли 361* 10 3 МПа. Ускорение силы тяжестина поверхности планеты составляет 982 см/с2, достигает максимума в 1037 см/с2 на глубине 2900 км и минимально (ноль) в центре Земли.

Магнитное поле Земли предположительно обусловлено возникающими при суточном вращении планеты конвективными движениями жидкого вещества внешнего ядра. Изучение магнитных аномалий (вариаций напряженности магнитного поля) широко используется при поиске железорудных месторождений.
Тепловые свойства Землиформируются солнечной радиацией и тепловым потоком, распространяющимся из недр планеты. Влияние солнечного тепла не распространяется глубже 30 м. В этих пределах на некоторой глубине лежит пояс постоянной температуры, равной среднегодовой температуре воздуха данной местности. Глубже этого пояса температура постепенно возрастает под действием теплового потока самой Земли. Интенсивность теплового потока зависит от строения земной коры и от степени активности эндогенных процессов. Средне планетарная величина теплового потока равна 1,5 мккал/см2 * с, на щитах около 0,6 - 1,0 мккал/см 2 * с, в горах до 4,0 мккал/см 2 * с, а в срединно-океанических рифтах до 8,0 мккал/см 2 * с. В числе источников, формирующих внутреннее тепло Земли, предполагаются следующие: энергия распада радиоактивных элементов, химические превращения вещества, гравитационное перераспределение вещества в мантии и ядре. Геотермический градиент - величина нарастания температуры на единицу глубины. Геотермическая ступень - величина глубины, за которую температура возрастает на 1° С. Эти показатели сильно отличаются в разных местах планеты. Максимальные величины градиента наблюдаются в подвижных зонах литосферы, а минимальные на древних континентальных массивах. В среднем геотермический градиент верхней части земной коры составляет около 30° С на 1 км, а геотермическая ступень около 33 м. Предполагается, что с ростом глубины геотермический градиент уменьшается, а геотермическая ступень увеличивается. На основании гипотезы о преобладании в составе ядра железа, были рассчитаны температуры его плавления на разных глубинах (с учетом закономерного роста давления): 3700° С на границе мантии и ядра, 4300° С на границе внутреннего и внешнего ядра.

Химический состав Земли считается сходным со средним химическим составом изученных метеоритов. Метеориты по составу бывают:
железные (никелистое железо с примесью кобальта и фосфора) составляют 5,6% от найденных;
железокаменные (сидеролиты - смесь железа и силикатов) встречаются реже всего – составляют лишь 1,3% от известных;
каменные (аэролиты - обогащенные железом и магнием силикаты с примесью никелистого железа) являются самыми распространенными – 92,7%.

Таким образом, в среднем химическом составе Земли преобладают четыре элемента. Кислорода и железа содержится примерно по 30%, магния и кремния – по 15%. На долю серы приходится около 2 - 4%; никеля, кальция и алюминия – по 2%.